The partition of basic exchangeable cations

Soil Research ◽  
1975 ◽  
Vol 13 (1) ◽  
pp. 77 ◽  
Author(s):  
BM Tucker

The sets of basic exchangeable cations in soil samples can be divided into subsets by changing the conditions under which their displacement takes place. Using a large cation (cholinium) in a nonaqueous solvent (alcohol), primary subsets of exchangeable calcium, magnesium and sodium are displaced. When ammonium ion in an aqueous solvent is used after this primary displacement, a conditionally exchangeable subset is obtained. Potassium is almost completely conditionally exchangeable in the soils studied. The conditional subsets may be further divided depending on whether the condition of using a smaller displacing cation (NH4+) or of having water present is met first. The concept of partition by exchange conditions is distinct from a partition based on exchange constants (under unchanged conditions) to which the epithets easily and difficultly exchangeable are appropriate.


Soil Research ◽  
1975 ◽  
Vol 13 (1) ◽  
pp. 91
Author(s):  
BM Tucker

The examination of a range of soil profiles showed that both primary and conditional exchangeable calcium, magnesium and sodium are present in all the soils, but the proportions of these subsets vary widely. There are some general correlations with profile form, and it is likely that the partition of these exchangeable cations will prove useful in studying the properties and behaviour of soils. Potassium differs from the other three cations in its exchange reactions-it is present almost entirely in the conditional subset-and it requires an additional exchange reagent to partition it successfully.



2009 ◽  
Vol 44 (8) ◽  
pp. 996-1001 ◽  
Author(s):  
Pedro Rodolfo Siqueira Vendrame ◽  
Robélio Leandro Marchão ◽  
Osmar Rodrigues Brito ◽  
Maria de Fátima Guimarães ◽  
Thierry Becquer

The objective of this work was to assess the relationship between macrofauna, mineralogy and exchangeable calcium and magnesium in Cerrado Oxisols under pasture. Twelve collection points were chosen in the Distrito Federal and in Formosa municipality, Goiás state, Brazil, representing four soil groups with varied levels of calcium + magnesium and kaolinite/(kaolinite + gibbsite) ratios. Soil macrofauna was collected in triplicate at each collection point, and identified at the level of taxonomic groups. Macrofauna density showed correlation with contents of kaolinite, gibbsite and exchangeable Ca + Mg in the soils. Mineralogy and exchangeable Ca + Mg had significant effects on taxonomic groups and relative density of soil macrofauna. The termites (Isoptera) were more abundant in soils with low exchangeable Ca + Mg; earthworms (Oligochaeta), in soils with high levels of kaolinite; and Hemiptera and Coleoptera larvae were more abundant in gibbsitic soils with higher contents of total carbon.



1958 ◽  
Vol 38 (2) ◽  
pp. 105-115
Author(s):  
W. A. Ehrlich ◽  
R. E. Smith

The analysis of the principal horizons of 11 halomorphic profiles was undertaken in an attempt to ascertain, chiefly, the kind and quantity of soluble salts and exchangeable cations assumed to be the main causative agents in the formation of solonetzic soils in Manitoba. The results showed that water-soluble sodium was equal to or greater in quantity than water-soluble calcium or water-soluble magnesium; that exchangeable calcium followed closely by exchangeable magnesium dominated the exchange complexes; and that exchangeable sodium in excess of 15 per cent of the exchangeable cations was found only in some horizons of the Solonchak, Solonetz and Solodized-Solonetz soils in the Chesterfield Association.





Soil Research ◽  
1977 ◽  
Vol 15 (3) ◽  
pp. 255 ◽  
Author(s):  
WW Emerson ◽  
CL Chi

Samples of illites, two extracted from soils, one from a shale, prepared with a range of exchangeable calcium, magnesium, sodium were immersed dry into water. The extent of dispersion with time was estimated visually and also deduced from the O.D. of the suspensions derived from the dispersed clay. The dispersion of wet calcium and magnesium soil illites sheared at a given water content and then immersed in water was also assessed visually. The dispersion of all three illites was enhanced when magnesium was the dominant cation rather than calcium. For the soil clays a lower ESP was required to initiate dispersion of the dry clay when immersed in water. Both calcium and magnesium forms of the shale illite dispersed partially over a period of several days when immersed dry into water, the magnesium to a greater extent than calcium. The magnesium form of the coarser of the two soil illites also dispersed slowly. By comparing the calcium-magnesium and calcium-sodium forms of the last clay, it was deduced that about 10 times the equivalent concentration of exchangeable magnesium as sodium was needed to cause the same degree of dispersion. For the other soil illite the water content for dispersion of the wet, sheared magnesium clay was found to be less than for the calcium clay. The O.D. of suspensions of the clays was found to decrease with increasing ESP and when magnesium was the dominant cation rather than calcium. This is explained in terms of particle aggregation. The ease of dispersion of the illites was correlated with particle size. Possible reasons for this, and the effect of magnesium, as opposed to calcium, on the forces between the clay particles are discussed.



2015 ◽  
Vol 29 (1) ◽  
pp. 31-37 ◽  
Author(s):  
Ewa A. Czyż ◽  
Anthony R. Dexter

Abstract A method for the experimental determination of the amount of clay dispersed from soil into water is described. The method was evaluated using soil samples from agricultural fields in 18 locations in Poland. Soil particle size distributions, contents of organic matter and exchangeable cations were measured by standard methods. Sub-samples were placed in distilled water and were subjected to four different energy inputs obtained by different numbers of inversions (end-over-end movements). The amounts of clay that dispersed into suspension were measured by light scattering (turbidimetry). An empirical equation was developed that provided an approximate fit to the experimental data for turbidity as a function of number of inversions. It is suggested that extrapolation of the fitted equation to zero inversions enables the amount of spontaneously-dispersed clay to be estimated. This method introduces the possibility of replacing the existing subjective, qualitative method of determining spontaneously-dispersed clay with a quantitative, objective method. Even though the dispersed clay is measured under saturated conditions, soil samples retain a ‘memory’ of the water contents at which they have been stored.



1965 ◽  
Vol 37 (2) ◽  
pp. 148-161
Author(s):  
Ulla Marttila

An attempt was made to study the cation exchange capacity, the percentage base saturation and the amounts of the most common cations in the different types and depths of the Finnish soils on the basis of a material of 100 soil samples from various parts of the country. The exchangeable cations were leached from the soil with neutral 1N ammonium acetate. Calcium, magnesium, potassium, sodium and hydrogen were determined and the exchange capacity was calculated as the sum of all these cations. In the different soil types the mean values of the CEC were the following: organic soils 92.1 me per 100 g of soil, non-Litorina clays 28.9 », Litorina clays 27.9 », loam and silt soils 16.9 », sand and fine sand soils 14.5 ». The highest values of the percentage base saturation, on an average 85 % were obtained in the Glacial clay soils and the lowest ones in the organic soils, 34%, and in the Litorina clay soils, 36 %. BS % was generally greater in the deeper than in the surface layers. The contents of clay (



Author(s):  
Hüseyin Sarı

Investigation and mapping spatial variations (distance-dependent variations) in soil characteristics with the aid of geostatistical methods will bring about significant savings for labor, time and cost in agricultural practices. From this point forth, this study was conducted around Naipköy dam to determine spatial distribution of physical and chemical soil characteristics. Soil samples were taken from both sides of Tekirdağ Ganos Mountain (the side towards Naip plain and the side towards Marmora Sea). The research site was divided into 1000 x 2000 m grids and disturbed samples were taken from 0-30 cm soil profile of 24 points. Soil samples were subjected to texture, organic matter, pH, EC, calcium, magnesium, potassium and phosphorus analyses. Analyses revealed that the sections towards Naip plain had quite high clay and silt contents because of clayey deposition over these sections. These samples also had high calcium and thusly pH values because of lime layers of these sections. Soil properties were mapped in ArcGIS/ArcMAP 10.6 software with the aid of Inverse Distance Weighting (IDW) method. The maps generated facilitated assessments made for the relationships between land use and physico-chemical soil characteristics. Statistical analyses revealed the least coefficient of variation (8.44%) for pH and the greatest coefficient of variation (73.51%) for phosphorus.



Author(s):  
Prashant Joshi ◽  
Dhiraj Kadam ◽  
Mayur Gawande ◽  
Vishal Maval

The present investigation was carried out to determine soil and leaf nutritional status of some typical healthy and declined mandarin orchards of Amravati District (M.S) during 2016-19.Total twenty five representative surface and depth wise soil and leaf samples from healthy and declined mandarin orchards were collected and analyzed various nutrients in plant as well as leaf samples. The data analysis showed that total nitrogen content in healthy and declined mandarin orchards from surface soils varied from 0.045 to 0.093 % and 0.015 to 0.37% respectively. The available nitrogen, phosphorus and potassium content of healthy orchards surface soils varied from 200.0 to 265.7 kg ha-1 , 22.0 to 35.3 kg ha-1 , 320.0 to 665.0 kg ha-1 and in declined orchards it varied from 130.4 to 203.5 kg ha-1 , 17.8 to 21.3 kg ha-1 , 360.0 to 744.4 kg ha-1 respectively. The exchangeable calcium and magnesium together constitute more than 80% of exchange complex. The exchangeable calcium, magnesium and sulphur content in healthy orchards surface soils varied from 26.34 to 30.22 cmol (p+ ) kg ha-1 , 11.71 to 16.92 cmol (p+ ) kg ha-1 , 0.27 to 0.90 kg ha-1 and in declined orchards it varied from 29.00 to 31.98 cmol (p+ ) kg ha-1 , 12.07 to 13.71 cmol (p+ ) kg ha-1 , 0.36 to 0.69 kg ha-1 respectively. Micronutrients status of orange orchards showed that available copper, zinc, iron and manganese in healthy orchards surface soils varied from 2.20 to 5.60 ppm, 0.50 to 0.79 ppm, 4.50 to 6.29 ppm, 12.61 to 18.11 ppm and in declined orchards it varied from 1.90 to 2.48 ppm, 0.35 to 0.46 ppm, 3.40 to 5.00 ppm, 8.10 to 12.24 ppm respectively. Findings revealed that total nitrogen, available nitrogen, phosphorus, sulphur, zinc and manganese content found more supporting in healthy orchards than declined ones. Depth wise distribution showed that total nitrogen, available nitrogen, phosphorus and copper showed decreasing trend with the soil depth. The leaf nutrient content in the plant showed that nitrogen, phosphorus and potassium content in leaf of healthy orchards varied from 2.35 to 2.55%, 0.14 to 0.17%, 0.82 to 1.00% and in declined orchards it varied from 1.75 to 2.00%, 0.10 to 0.13%, and 0.84 to 1.70% respectively. Calcium, magnesium and sulphur content in healthy orchards varied from 3.00 to 3.90%, 0.60 to 0.74%, 0.21 to 0.19% and in declined orchards it ranged from 2.40 to 3.15%, 0.33 to 0.74%, and 0.19 to 0.23% respectively. Results pertaining to micronutrient showed that iron; manganese, copper and zinc in healthy orchards varied from 105.6 to 140.6 ppm, 21.72 to 34.62 ppm, 29.40 to 35.96 ppm, 30.45 to 39.18 ppm, and in declined orchards it varied from 70.66 to 100.00 ppm, 20.38 to 27.67 ppm, 21.72 to 26.05 ppm, and 17.24 to 25.00 ppm respectively. Results showed that a healthy orchard has significantly higher content of nutrient than declined orchards except potassium content



Author(s):  
Ranendu Ghosh ◽  
N. Padmanabhan ◽  
K. C. Patel

Soil fertility characterised by nitrogen, phosphorus, potassium, calcium, magnesium and sulphur is traditionally measured from soil samples collected from the field. The process is very cumbersome and time intensive. Hyperspectral data available from Hyperion payload of EO 1 was used for facilitating preparation of soil fertility map of Udaipur district of Rajasthan state, India. Hyperion data was pre-processed for band and area sub setting, atmospheric correction and reflectance data preparation. Spectral analysis in the form of SFF and PPI were carried out for selecting the ground truth sites for soil sample collection. Soil samples collected from forty one sites were analysed for analysis of nutrient composition. Generation of correlogram followed by multiple regressions was done for identifying the most important bands and spectral parameters that can be used for nutrient map generation.



Sign in / Sign up

Export Citation Format

Share Document