The availability of soil and fertilizer phosphorus to wheat and rape at different water regimes

Soil Research ◽  
1980 ◽  
Vol 18 (3) ◽  
pp. 353 ◽  
Author(s):  
WM Strong ◽  
G Barry

The uptake of native phosphorus and band-applied fertilizer phosphorus was studied for wheat (Triticum vulgare L. Oxley) and rape (Brassica napus L. Dwarf Essex) at two water regimes in a pot experiment. Soils were cracking clays known to differ in phosphorus availability. Both crops responded to fertilizer on Cecilvale (low available phosphorus), but not on Waco soil (high available phosphorus), and wheat also responded on Mywybilla soil (intermediate phosphorus). Fertilizer uptake was in the order: Cecilvale > Mywybilla > Waco for wheat and Cecilvale > Waco for rape. Crops recovered generally twice as much native phosphorus from each soil with the wet than with the dry regime. There was no effect of water regime on uptake of fertilizer phosphorus by wheat on any soil. Water regime did not increase fertilizer uptake by rape from Waco soil, although it did increase uptake on Cecilvale soil. Favourable fertilizer response under arid conditions appears to be due to a reduction in accessibility of native soil phosphorus due to the stunted root system, but no reduction in the availability of fertilizer phosphorus.


1976 ◽  
Vol 86 (1) ◽  
pp. 181-187 ◽  
Author(s):  
A. P. Draycott ◽  
M. J. Durrant

SUMMARYTwenty experiments between 1970 and 1974 tested the effect of five amounts of triple superphosphate (0–110 kg P/ha) on sugar-beet yield in fields where soil contained little sodium bicarbonate-soluble phosphorus. The average yield without phosphorus fertilizer was 6·69 t/ha sugar and the increase from the optimum dressing 0·46 t/ha; the average soil concentration was 12 mg P/l. The fertilizer increased yield by 0·77 t/ha sugar on fields with 0–9 mg/l soil phosphorus, by 0·31 t/ha when soil phosphorus was 10–15 mg/l and had little effect on soils containing larger amounts.The concentration of phosphorus in plants harvested in mid-summer contained on average 0·29% P in dried tops and 0·13% in roots when given no phosphorus fertilizer, representing a total of 19·3 kg/ha P uptake. Giving superphosphate increased the phosphorus in both dried tops and roots by up to 0·03% and there was 3·7 and 1·7 kg/ha more phosphorus in tops and roots respectively. On the most responsive fields (0–9 mg/l soil P), the fertilizer increased the phosphorus in tops and roots by 0·05% and total uptake by 7 kg P/ha. The increase in uptake (or recovery) of fertilizer varied from 15% when 14 kg P/ha was given to less than 5% when 110 kg P/ha was used.A dressing of 27 kg P/ha was adequate for maximum yield on 19 of the 20 fields. When fields were grouped, 0–9, 10–15, 16–25 and > 26 mg/l NaHCO3-soluble soil phosphorus, and taking into account the value of the increased sugar yield, the cost of the fertilizer and its residual value, 60, 30, 20 and 10 kg P/ha respectively were the most profitable dressings. These experiments provide evidence, however, that the fertilizer would be used more efficiently if fields containing 0–9 mg soil phosphorus were subdivided into those with 0–4·5 and those with 4·6–9·0 mg/l and the groups given 80 and 40 kg P/ha respectively. These recommendations are substantially less than those used at present; they are adequate for sugar beet but other crops in the rotation would need similar close examination to ensure maximum yield and maintain adequate soil reserves of phosphorus.



2010 ◽  
Vol 90 (3) ◽  
pp. 305-310 ◽  
Author(s):  
E G Smith ◽  
B M Upadhyay ◽  
M L Favret ◽  
R E Karamanos

Hybrid (HY) canola (Brassica napus L.) produces a higher seed yield than open-pollinated (OP) canola. While it is expected higher-yielding HY canola may require higher total available nutrients, especially nitrogen (N), the evidence is not conclusive. This study used canola yield data from several site-years and fertility experiments to determine whether HY and OP canola types require different rates of total available N (TAN) and total available phosphorus (TAP). The yield response of the two canola genotypes to TAP was the same, but for TAN the yield response was greater for HY canola. The quadratic yield response results were confirmed using three plateau equations. Optimal TAN for HY canola was higher than for OP canola. Soil test laboratories and producers growing HY canola need to modify N fertility for HY canola, compared with OP canola for which most of the current N fertilizer recommendations were developed. Key words: Economics, fertilizer, yield response, canola, hybrid, open-pollinated



1999 ◽  
Vol 40 (3) ◽  
pp. 233-240 ◽  
Author(s):  
S. G. T. Giovannini ◽  
D. M. L. da Motta Marques

The behavior of three emergent aquatic macrophytes under different water regimes was studied with the aim of achieving reconvertion of degraded wetlands and wetland construction for water quality improvement. Scirpus californicus, Typha subulata and Zizaniopsis bonariensis establishment was evaluated under a split plot design, in a factorial experiment with three levels of a water regime factor over a subsoil substratum. The stagnant 10±2 cm water level was best suited to T. subulata and Z. bonariensis development and S. californicus developed better at oscillating water level (3±2 cm) with flooding at 48 hour intervals. The morphological response variables (thickness and width at half length of the tallest leaf or stem per plant, height of tallest leaf or stem per plant, number of green leaves or stems and number of shoots per plant, and survival of propagules' original leaves or stems) were satisfactory descriptors to differentiate (p<0.1%) growth of above ground parts as related to water regimes and species. The three species did survive satisfactory in subsoil-like substratum under the tested water regimes. Mortality was in the worse case, 17.2%, 36.7%, and 9.4% for S. californicus, T. subulata, and Z. bonariensis, respectively. Although Z. bonariensis growth was very poor, only S. californicus and T. subulata could be indicated for planting under similar limiting conditions.



2018 ◽  
Vol 64 (No. 9) ◽  
pp. 421-426
Author(s):  
Li Jun ◽  
Liu Lixin ◽  
Zhang Chunlei ◽  
Chen Chang ◽  
Lu Guangyuan ◽  
...  

Soil microbial properties are varied by growing different crops, ultimately reflecting the growth and reproduction of crops. In this study, two types of oilseed rape (Brassica napus L. ZS11 and ZY821) and wheat (Triticum aestivum L. ZM9023) were planted in the Jianghan plain of China. Rhizosphere soil samples were collected three months after sowing. Soil physicochemical properties, enzyme activities and microbial diversity were determined. The results showed that soil available phosphorus significantly increased from 25.57 mg/kg (ZM9023) to 33.20 mg/kg (ZS11) and 35.72 mg/kg (ZY821), respectively. Invertase activity of ZS821 (0.86 mg glucose/g) was significantly lower than in ZS11 (1.04 mg glucose/g). Acid phosphatase activity under planting rapes was significantly higher than that under wheat. Urease activities significantly increased from 40.88 mg NH<sub>4</sub><sup>+</sup>-N/g soil/24 h (NFP) to 49.04 mg NH<sub>4</sub><sup>+</sup>-N/g soil/24 h (FNP) and 51.28 mg NH<sub>4</sub><sup>+</sup>-N/g soil/24 h (ZM9023), 51.60 mg NH<sub>4</sub><sup>+</sup>-N/g soil/24 h (ZY821) and 52.28 mg NH<sub>4</sub><sup>+</sup>-N/g soil/24 h (ZS11), respectively. The ACE (abundance based coverage estimator) and Chao1 indexes of bacteria of ZS11 were lower than ZY821, which were similar to ZM9023. Fertilization increased soil bacterial ACE and Chao1 indexes. However, ACE and Chao1, Shannon and Simpson indexes of soil fungi for ZS11 were significantly higher than in ZY821, which were similar to ZM9023 (except for the Shannon index).



2021 ◽  
Vol 45 (2) ◽  
pp. 197-206
Author(s):  
Fen JIANG ◽  
Juan HUANG ◽  
Guo-Wei CHU ◽  
Yan CHENG ◽  
Xu-Jun LIU ◽  
...  


1978 ◽  
Vol 18 (91) ◽  
pp. 243 ◽  
Author(s):  
AJ Montgomery ◽  
G Rubenis

The level of soil phosphorus and the response of irrigated perennial pasture to phosphorus fertilizer were measured on 33 sites in the Goulburn Valley of northern Victoria. Eleven of the 33 sites were found to have Olsen P values above 10 p.p.m. and Colwell P values above 30 p.p.m. Of these 11, 9 did not give a pasture response to superphosphate and 2 gave a relatively small response. Functions of the form Y = a - be-CX (where Y = total pasture yield over 12 months (t ha-1), X = rate of superphosphate application (t ha-1), and a, b and c are constants respectively denoting maximum yield, maximum response, and the rate at which maximum yield is approached) were fitted to the yield data from those sites at which a response did occur. b was found to be correlated with a number of soil tests, the highest correlation coefficient being -0.74 for Colwell P. a was significantly correlated with some tests (P < 0.01) but was generally less predictable, and c gave very low correlation coefficients with all soil tests.



2015 ◽  
Vol 7 (3) ◽  
pp. 167-175 ◽  
Author(s):  
M. Seafatullah ◽  
M. A Hoque ◽  
M. S. Islam ◽  
M. M. Islam ◽  
M. N. Islam

One of the approaches for phosphorus fertilizer management is controlling the soil phosphorus adsorption behavior. To examine the effect on phosphorus adsorption behavior, three amended soil samples were prepared by mixing 10% (w/w in dry basis) cow dung, biogas slurry and vermicompost with soil. Phosphorus adsorption behavior was examined by using Langmuir, and Temkin adsorption isotherms. Initially, biogas slurry and vermicompost increased the maximum phosphorus adsorption capacity (MPAC) of soil from 461 µg g-1 (control) to 558.0357 and 586.17 µg g-1 respectively, and then decreased steadily and reached 429.92 and 398.41 µg g-1 respectively in five weeks.  Whereas in case of cow dung, MPAC was initially decreased, then reached maximum in 17 days and ultimately decreased. Thus application of cow dung along with phosphate fertilizer seems to increase the loss of the fertilizer through runoff and leaching. Conversely, biogas slurry and vermicompost prevent phosphorus loss by regulating phosphorus release through initial enhancement followed by gradual decrease in phosphorus adsorption capacity of soil. Both biogas slurry and vermicompost can be considered as good soil amendments as they have the ability to control the release of phosphorus fertilizer as per the need of the plants.



1963 ◽  
Vol 43 (2) ◽  
pp. 210-218 ◽  
Author(s):  
W. S. Ferguson ◽  
R. A. Hedlin

Fertilizer experiments indicated that much higher plant response to phosphorus occurred on moderately saline than on non-saline soil. Soil analyses showed that this difference could not be explained by the amount of sodium bicarbonate extractable phosphorus contained in these two soils.Greenhouse experiments with artificially salinized soil indicated that the uptake of phosphorus by barley plants was related to the salt concentration in the soil. Phosphorus absorption increased with increasing salt concentration, reached a maximum when the saturation soil extract measured approximately 6 millimhos, and then declined with further increases in salt concentration. This relationship was similar for fertilized and unfertilized plants. However, the increase in phosphorus absorption was much greater when phosphorus fertilizer was applied.The same relationship between salt concentration and phosphorus absorption was obtained with increasing NaCl concentration in liquid cultures. Maximum phosphorus absorption by barley occurred when the solution contained between 0.05 and 0.10 molar NaCl This relationship is attributed to the effect of salts on the physiology of the plant rather than the effect of salts on phosphorus solubility.



1984 ◽  
Vol 8 (3) ◽  
pp. 136-149 ◽  
Author(s):  
Donal D. Hook

Abstract Many tree species in the South are adapted to periodic and/or prolonged soil waterlogging. However, artificial disturbances of natural water regimes sometimes cause flooding to occur at abnormal times or the flood water to be deeper and waterlogging longer in duration than is normal. As a consequence, it is difficult for forest managers to predict how a species will respond to such disturbances or to decide how to manage an area where the water regime has been significantly altered. This paper discusses some factors which influence the waterlogging tolerance of tree species, compiles several classification systems, indicates the pertinent literature, and offers a new relative waterlogging-tolerance rating for southern lowland tree species.



Sign in / Sign up

Export Citation Format

Share Document