Occurrence of wildfire in the northern Great Lakes Region: Effects of land cover and land ownership assessed at multiple scales

2001 ◽  
Vol 10 (2) ◽  
pp. 145 ◽  
Author(s):  
Jeffrey A. Cardille ◽  
Stephen J. Ventura

Risk of wildfire has become a major concern for forest managers, particularly where humans live in close proximity to forests. To date, there has been no comprehensive analysis of contemporary wildfire patterns or the influence of landscape-level factors in the northern, largely forested parts of Minnesota, Wisconsin and Michigan, USA. Using electronic archives from the USDA Forest Service and from the Departments of Natural Resources of Minnesota, Wisconsin, and Michigan, we created and analysed a new, spatially explicit data set: the Lake States Fire Database. Most of the 18 514 fires during 1985—1995 were smaller than 4 ha, although there were 746 fires larger than 41 ha. Most fires were caused by debris burning and incendiary activity. There was considerable interannual variability in fire counts; over 80% of fires occurred in March, April, or May. We analysed the relationship of land cover and ownership to fires at two different fire size thresholds across four gridded spatial scales. Fires were more likely on non-forest than within forests; this was also true if considering only fires larger than 41 ha. An area of National or State Forest was less likely to have experienced a fire during the study period than was a forest of equal size outside National or State Forest boundaries. Large fires were less likely in State Forests, although they were neither more nor less likely to have occurred on National Forests. Fire frequency also varied significantly by forest type. All results were extremely consistent across analysis resolutions, indicating robust relationships.


2013 ◽  
Vol 10 (10) ◽  
pp. 15735-15778 ◽  
Author(s):  
W. Knorr ◽  
T. Kaminski ◽  
A. Arneth ◽  
U. Weber

Abstract. Human impact on wildfires, a major Earth system component, remains poorly understood. While local studies have found more fires close to settlements and roads, assimilated charcoal records and analyses of regional fire patterns from remote-sensing observations point to a decline in fire frequency with increasing human population. Here, we present a global analysis using three multi-year satellite-based burned-area products combined with a parameter estimation and uncertainty analysis with a non-linear model. We show that at the global scale, the impact of increasing population density is mainly to reduce fire frequency. Only for areas with up to 0.1 people per km2, we find that fire frequency increases by 10 to 20% relative to its value at no population. The results are robust against choice of burned-area data set, and indicate that at only very few places on Earth, fire frequency is limited by human ignitions. Applying the results to historical population estimates results in a moderate but accelerating decline of global burned area by around 14% since 1800, with most of the decline since 1950.



Author(s):  
H. Padalia ◽  
P. P. Mondal

Increasing incidences of fire from land conversion and residue burning in tropics is the major concern in global warming. Spatial and temporal monitoring of trends of fire incidences is, therefore, significant in order to determine contribution of carbon emissions from slash and burn agriculture. In this study, we analyzed time-series Terra / Aqua MODIS satellite hotspot products from 2001 to 2013 to derive intra- and inter-annual trends in fire incidences in Nagaland state, located in the Indo-Burma biodiversity hotspot. Time-series regression was applied to MODIS fire products at variable spatial scales in GIS. Significance of change in fire frequency at each grid level was tested using t statistic. Spatial clustering of higher or lower fire incidences across study area was determined using Getis-OrdGi statistic. Maximum fire incidences were encountered in moist mixed deciduous forests (46%) followed by secondary moist bamboo brakes (30%). In most parts of the study area fire incidences peaked during March while in warmer parts (e.g. Mon district dominated by indigenous people) fire activity starts as early as during November and peaks in January. Regression trend analysis captured noticeable areas with statistically significant positive (e.g. Mokokchung, Wokha, Mon, Tuensang and Kiphire districts) and negative (e.g. Kohima and north-western part of Mokokchung district) inter-annual fire frequency trends based on area-based aggregation of fire occurrences at different grid sizes. Localization of spatial clusters of high fire incidences was observed in Mokokchung, Wokha, Mon,Tuensang and Kiphire districts.



PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5940 ◽  
Author(s):  
Ryan J. Leonard ◽  
Katie K.Y. Wat ◽  
Clare McArthur ◽  
Dieter F. Hochuli

Changes in the mean and variance of phenotypic traits like wing and head morphology are frequently used as indicators of environmental stress experienced during development and may serve as a convenient index of urbanization exposure. To test this claim, we collected adult western honey bee (Apis mellifera Linnaeus 1758, Hymenoptera, Apidae) workers from colonies located across an urbanization gradient, and quantified associations between the symmetries of both wing size and wing shape, and several landscape traits associated with urbanization. Landscape traits were assessed at two spatial scales (three km and 500 m) and included vegetation and anthropogenic land cover, total road length, road proximity and, population and dwelling density. We then used geometric morphometric techniques to determine two wing asymmetry scores—centroid size, a measure of wing size asymmetry and Procrustes distance, a measure of wing shape asymmetry. We found colony dependent differences in both wing size and shape asymmetry. Additionally, we found a negative association between wing shape asymmetry and road proximity at the three km buffer, and associations between wing shape asymmetry and road proximity, anthropogenic land cover and vegetation cover at the 500 m buffer. Whilst we were unable to account for additional variables that may influence asymmetry including temperature, pesticide presence, and parasitism our results demonstrate the potential usefulness of wing shape asymmetry for assessing the impact of certain landscape traits associated with urbanization. Furthermore, they highlight important spatial scale considerations that warrant investigation in future phenotypic studies assessing urbanization impact.



2001 ◽  
Vol 10 (4) ◽  
pp. 329 ◽  
Author(s):  
Penelope Morgan ◽  
Colin C. Hardy ◽  
Thomas W. Swetnam ◽  
Matthew G. Rollins ◽  
Donald G. Long

This paper was presented at the conference ‘Integrating spatial technologies and ecological principles for a new age in fire management’, Boise, Idaho, USA, June 1999 Maps of fire frequency, severity, size, and pattern are useful for strategically planning fire and natural resource management, assessing risk and ecological conditions, illustrating change in disturbance regimes through time, identifying knowledge gaps, and learning how climate, topography, vegetation, and land use influence fire regimes. We review and compare alternative data sources and approaches for mapping fire regimes at national, regional, and local spatial scales. Fire regimes, defined here as the nature of fires occurring over an extended period of time, are closely related to local site productivity and topography, but climate variability entrains fire regimes at regional to national scales. In response to fire exclusion policies, land use, and invasion of exotic plants over the last century, fire regimes have changed greatly, especially in dry forests, woodlands, and grasslands. Comparing among and within geographic regions, and across time, is a powerful way to understand the factors determining and constraining fire patterns. Assembling spatial databases of fire information using consistent protocols and standards will aid comparison between studies, and speed and strengthen analyses. Combining multiple types of data will increase the power and reliability of interpretations. Testing hypotheses about relationships between fire, climate, vegetation, land use, and topography will help to identify what determines fire regimes at multiple scales.



2021 ◽  
Author(s):  
Simon Kärvemo ◽  
Mari Jönsson ◽  
Anne-Maarit Hekkala ◽  
Jörgen Sjögren ◽  
Joachim Strengbom

Abstract Context Biodiversity is highly affected by industrial forestry, which leads to the loss and fragmentation of natural habitats. To date, most conservation studies have evaluated associations among a single species group, forest type, or spatial scale. Objective The objective was to evaluate the richness of multiple species groups across various forest types and characteristics at multiple scales. Methods We used the occurrence data for 277 species of conservation interest from 455 stands of high conservation value, including four species groups and four forest types. Results Local, landscape, and regional forest characteristics influenced biodiversity in a non-uniform pattern among species groups and forest types. For example, an increased local spruce basal area in spruce forests was associated with higher vascular plant and bryophyte richness values, whereas macrofungi and lichen richness were positively correlated with deadwood availability, but negatively correlated with the spruce volume in the landscape. Furthermore, landscapes with twice as much mature forest as the average, had more than 50% higher richness values for vascular plants, macrofungi, and lichens. Conclusion Among sessile species groups in northern forests, a uniform conservation strategy across forest types and scales is suboptimal. A multi-faceted strategy that acknowledges differences among species groups and forest types with tailored measures to promote richness is likely to be more successful. Nevertheless, the single most common measure associated with high richness across the species groups and forest types was mature forest in the landscape, which suggests that increasing old forests in the landscape is a beneficial conservation strategy.



2020 ◽  
Vol 47 (1) ◽  
pp. 44 ◽  
Author(s):  
Scott H. Markwith ◽  
Aaron H. Evans ◽  
Vanessa Pereira da Cunha ◽  
Julio Cesar de Souza

Abstract ContextExamining land cover’s influences on roadkills at single predetermined scales is more common than evaluating multiple scales, but examining land cover at the appropriate scale may be necessary for efficient design of mitigation measures, and that appropriate scale may be difficult to discern a priori. In addition, the taxonomic rank at which data is analysed may influence results and subsequent conclusions concerning mitigation. AimsThe objective of the present study was to assess the influence of variation in spatial scales of land cover explanatory variables and taxonomic rank of response variables in models of wildlife–vehicle collisions (WVCs). Research questions include: (1) do the scales of land cover measurement that produce the highest quality models differ among species; (2) do the factors that influence roadkill events differ within species at different scales of measurement and among species overall; and (3) does the taxonomic rank at which data is analysed influence the selection of explanatory variables? MethodsFour frequent WVC species representing diverse taxonomic classes, i.e. two mammals (Cerdocyon thous and Hydrochaeris hydrochaeris), one reptile (Caiman yacare) and one bird (Caracara plancus), were examined. WVCs were buffered, land cover classes from classified satellite imagery at three buffer radii were extracted, and logistic regression model selection was used. Key resultsThe scale of land cover variables selected for the highest quality models (and the selected variables themselves) may vary among wild fauna. The same explanatory variables and formulae are not always included in the candidate models in all compared scales for a given species. Explanatory variables may differ among taxonomically similar species, e.g. mammals, and pooling species at higher taxonomic ranks can result in models that do not correspond with species-level models of all pooled species. ConclusionsThe most accurate analyses of WVCs will likely be found when species are analysed individually and multiple scales of predictor variable collection are evaluated. ImplicationsMitigating the effects of roadways on wildlife population declines for both common and rare species is resource intensive. Resources spent optimising models for spatially targeting management actions may reduce the amount of resources used and increase the effectiveness of these actions.



2019 ◽  
Vol 11 (19) ◽  
pp. 2201 ◽  
Author(s):  
Stanimirova ◽  
Cai ◽  
Melaas ◽  
Gray ◽  
Eklundh ◽  
...  

Observations of vegetation phenology at regional-to-global scales provide important information regarding seasonal variation in the fluxes of energy, carbon, and water between the biosphere and the atmosphere. Numerous algorithms have been developed to estimate phenological transition dates using time series of remotely sensed spectral vegetation indices. A key challenge, however, is that different algorithms provide inconsistent results. This study provides a comprehensive comparison of start of season (SOS) and end of season (EOS) phenological transition dates estimated from 500 m MODIS data based on two widely used sources of such data: the TIMESAT program and the MODIS Global Land Cover Dynamics (MLCD) product. Specifically, we evaluate the impact of land cover class, criteria used to identify SOS and EOS, and fitting algorithm (local versus global) on the transition dates estimated from time series of MODIS enhanced vegetation index (EVI). Satellite-derived transition dates from each source are compared against each other and against SOS and EOS dates estimated from PhenoCams distributed across the Northeastern United States and Canada. Our results show that TIMESAT and MLCD SOS transition dates are generally highly correlated (r = 0.51-0.97), except in Central Canada where correlation coefficients are as low as 0.25. Relative to SOS, EOS comparison shows lower agreement and higher magnitude of deviations. SOS and EOS dates are impacted by noise arising from snow and cloud contamination, and there is low agreement among results from TIMESAT, the MLCD product, and PhenoCams in vegetation types with low seasonal EVI amplitude or with irregular EVI time series. In deciduous forests, SOS dates from the MLCD product and TIMESAT agree closely with SOS dates from PhenoCams, with correlations as high as 0.76. Overall, our results suggest that TIMESAT is well-suited for local-to-regional scale studies because of its ability to tune algorithm parameters, which makes it more flexible than the MLCD product. At large spatial scales, where local tuning is not feasible, the MLCD product provides a readily available data set based on a globally consistent approach that provides SOS and EOS dates that are comparable to results from TIMESAT.



2014 ◽  
Vol 11 (4) ◽  
pp. 1085-1102 ◽  
Author(s):  
W. Knorr ◽  
T. Kaminski ◽  
A. Arneth ◽  
U. Weber

Abstract. Human impact on wildfires, a major earth system component, remains poorly understood. While local studies have found more fires close to settlements and roads, assimilated charcoal records and analyses of regional fire patterns from remote-sensing observations point to a decline in fire frequency with increasing human population. Here, we present a global analysis using three multi-year satellite-based burned-area products combined with a parameter estimation and uncertainty analysis with a non-linear model. We show that at the global scale, the impact of increasing population density is mainly to reduce fire frequency. Only for areas with up to 0.1 people per km2, we find that fire frequency increases by 10 to 20% relative to its value at no population. The results are robust against choice of burned-area data set, and indicate that at only very few places on earth, fire frequency is limited by human ignitions. Applying the results to historical population estimates results in a moderate but accelerating decline of global burned area by around 14% since 1800, with most of the decline since 1950.



2019 ◽  
Author(s):  
Angelica Feurdean ◽  
Boris Vannière ◽  
Walter Finsinger ◽  
Dan Warren ◽  
Simon C. Connor ◽  
...  

Abstract. Wildfire occurrence is influenced by climate, vegetation and human activities. A key challenge for understanding fire-climate-vegetation interactions is to quantify the effect vegetation has in mediating fire regime. Here, we explore the relative importance of Holocene land cover and dominant functional forest type, and climate dynamics on biomass burned in temperate and boreo-nemoral regions of Central and Eastern Europe over the past 12 ka BP years. We used an extensive data set of Holocene pollen and sedimentary charcoal records, in combination with climate simulations and novel statistical modelling. Biomass burned was highest during the early Holocene and lowest during the mid Holocene in all three ecoregions, but diverged more markedly over the past 3–4 ka BP. Although the climate was an important driver of fire hazard during the warm and dry early Holocene, tree cover was consistently the strongest predictor of past biomass burning. In temperate forests, biomass burned was high at ~ 45 % tree cover and decreased strongly towards 60 % tree cover. In needleleaf dominated forests, biomass burned was highest at ~ 60–65 % tree cover and abruptly declined at > 65 % tree cover. Biomass burned also increased when arable lands and grasslands reached ~ 15–20 %, although this relationship was highly dynamic depending on land use intensity throughout ignition and fuel type and availability. Our observations cover the full range of Holocene climate variability and land cover changes and illustrates that percentages of land cover is a key predictor of the probability of fire occurrence over timescales of centuries to millennia. We suggest that long-term fire risk may be effectively reduced through land cover management, given that land cover has controlled fire regimes under the dynamic climates of the Holocene.



2004 ◽  
Vol 34 (7) ◽  
pp. 1400-1409 ◽  
Author(s):  
Tuomo H Wallenius ◽  
Timo Kuuluvainen ◽  
Ilkka Vanha-Majamaa

A wildfire area in a boreal forest landscape dominated by Pinus sylvestris L., in the Vienansalo wilderness area in eastern Fennoscandia, was examined for its spatial characteristics and fire history. The boundaries of the 360-ha fire that occurred in 1969 were mapped, and the vegetation types of burnt and unburnt areas were inventoried. Fire history was investigated in 40 study plots, and fire scars, tree ages, and charcoal in peat or soil were used for evidence of past fires. The complex shape of the 1969 fire and the detected small-scale variation in past fire frequencies were concordant with the existing small-scale variation in site moisture and vegetation characteristics in the area. Moist depressions, swamps, and more fertile forest patches dominated by Picea abies (L.) Karst. often did not burn when the nearby dryish forest type did. There was also temporal variability in fire frequency. An abrupt increase in the number of fires occurred in the late 17th century. In the mid-19th century, both the number of fires and the annually burnt area in the region decreased. Our results show that in the examined wildfire area, there has been considerable and consistent small-scale spatial variation in fire frequency and that historical fire regime evidently has been strongly affected by human activity.



Sign in / Sign up

Export Citation Format

Share Document