Towards improving wildland firefighter situational awareness through daily fire behaviour risk assessments in the US Northern Rockies and Northern Great Basin

2017 ◽  
Vol 26 (7) ◽  
pp. 574 ◽  
Author(s):  
W. Matt Jolly ◽  
Patrick H. Freeborn

Wildland firefighters must assess potential fire behaviour in order to develop appropriate strategies and tactics that will safely meet objectives. Fire danger indices integrate surface weather conditions to quantify potential variations in fire spread rates and intensities and therefore should closely relate to observed fire behaviour. These indices could better inform fire management decisions if they were linked directly to observed fire behaviour. Here, we present a simple framework for relating fire danger indices to observed categorical wildland fire behaviour. Ordinal logistic regressions are used to model the probabilities of five distinct fire behaviour categories that are then combined with a safety-based weight function to calculate a Fire Behaviour Risk rating that can plotted over time and spatially mapped. We demonstrate its development and use across three adjacent US National Forests. Finally, we compare predicted fire behaviour risk ratings with observed variations in satellite-measured fire radiative power and we link these models with spatial fire danger maps to demonstrate the utility of this approach for landscape-scale fire behaviour risk assessment. This approach transforms fire weather conditions into simple and actionable fire behaviour risk metrics that wildland firefighters can use to support decisions that meet required objectives and keep people safe.

2016 ◽  
Vol 25 (1) ◽  
pp. 62 ◽  
Author(s):  
Joseph J. O'Brien ◽  
E. Louise Loudermilk ◽  
Benjamin Hornsby ◽  
Andrew T. Hudak ◽  
Benjamin C. Bright ◽  
...  

Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at wide spatial extents and high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about fire effects and useful for examining patterns of fire spread. In this study we describe our methods for capturing and analysing spatially and temporally explicit long-wave infrared (LWIR) imagery from the RxCADRE (Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment) project and examine the usefulness of these data in investigating fire behaviour and effects. We compare LWIR imagery captured at fine and moderate spatial and temporal resolutions (from 1 cm2 to 1 m2; and from 0.12 to 1 Hz) using both nadir and oblique measurements. We analyse fine-scale spatial heterogeneity of fire radiant power and energy released in several experimental burns. There was concurrence between the measurements, although the oblique view estimates of fire radiative power were consistently higher than the nadir view estimates. The nadir measurements illustrate the significance of fuel characteristics, particularly type and connectivity, in driving spatial variability at fine scales. The nadir and oblique measurements illustrate the usefulness of the data for describing the location and movement of the fire front at discrete moments in time at these fine and moderate resolutions. Spatially and temporally resolved data from these techniques show promise to effectively link the combustion environment with post-fire processes, remote sensing at larger scales and wildland fire modelling efforts.


2017 ◽  
Vol 26 (11) ◽  
pp. 973 ◽  
Author(s):  
Miguel G. Cruz ◽  
Martin E. Alexander ◽  
Andrew L. Sullivan

Generalised statements about the state of fire science are often used to provide a simplified context for new work. This paper explores the validity of five frequently repeated statements regarding empirical and physical models for predicting wildland fire behaviour. For empirical models, these include statements that they: (1) work well over the range of their original data; and (2) are not appropriate for and should not be applied to conditions outside the range of the original data. For physical models, common statements include that they: (3) provide insight into the mechanisms that drive wildland fire spread and other aspects of fire behaviour; (4) give a better understanding of how fuel treatments modify fire behaviour; and (5) can be used to derive simplified models to predict fire behaviour operationally. The first statement was judged to be true only under certain conditions, whereas the second was shown not to be necessarily correct if valid data and appropriate modelling forms are used. Statements three through five, although theoretically valid, were considered not to be true given the current state of knowledge regarding fundamental wildland fire processes.


2002 ◽  
Vol 11 (4) ◽  
pp. 183 ◽  
Author(s):  
J. D. Carlson ◽  
Robert E. Burgan ◽  
David M. Engle ◽  
Justin R. Greenfield

This paper describes the Oklahoma Fire Danger Model, an operational fire danger rating system for the state of Oklahoma (USA) developed through joint efforts of Oklahoma State University, the University of Oklahoma, and the Fire Sciences Laboratory of the USDA Forest Service in Missoula, Montana. The model is an adaptation of the National Fire Danger Rating System (NFDRS) to Oklahoma, but more importantly, represents the first time anywhere that NFDRS has been implemented operationally using hourly weather data from a spatially dense automated weather station network (the Oklahoma Mesonet). Weekly AVHRR satellite imagery is also utilized for live fuel moisture and fuel load calculations. The result is a near-real-time mesoscale fire danger rating system to 1-km resolution whose output is readily available on the World Wide Web (http://agweather.mesonet.ou.edu/models/fire). Examples of output from 25 February 1998 are presented.The Oklahoma Fire Danger Model, in conjunction with other fire-related operational tools, has proven useful to the wildland fire management community in Oklahoma, for both wildfire anticipation and suppression and for prescribed fire activities. Instead of once-per-day NFDRS information at two to three sites, the fire manager now has statewide fire danger information available at 1-km resolution at up to hourly intervals, enabling a quicker response to changing fire weather conditions across the entire state.


Fire ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 47 ◽  
Author(s):  
W. Matt Jolly ◽  
Patrick H. Freeborn ◽  
Wesley G. Page ◽  
Bret W. Butler

Despite major advances in numerical weather prediction, few resources exist to forecast wildland fire danger conditions to support operational fire management decisions and community early-warning systems. Here we present the development and evaluation of a spatial fire danger index that can be used to assess historical events, forecast extreme fire danger, and communicate those conditions to both firefighters and the public. It uses two United States National Fire Danger Rating System indices that are related to fire intensity and spread potential. These indices are normalized, combined, and categorized based on a 39-yr climatology (1979–2017) to produce a single, categorical metric called the Severe Fire Danger Index (SFDI) that has five classes; Low, Moderate, High, Very High, and Severe. We evaluate the SFDI against the number of newly reported wildfires and total area burned from agency fire reports (1992–2017) as well as daily remotely sensed numbers of active fire pixels and total daily fire radiative power for large fires (2003–2016) from the Moderate-Resolution Imaging Spectroradiometer (MODIS) across the conterminous United States. We show that the SFDI adequately captures geographic and seasonal variations of fire activity and intensity, where 58% of the eventual area burned reported by agency fire records, 75.2% of all MODIS active large fire pixels, and 81.2% of all fire radiative power occurred when the SFDI was either Very High or Severe (above the 90th percentile). We further show that SFDI is a strong predictor of firefighter fatalities, where 97 of 129 (75.2%) burnover deaths from 1979 to 2017 occurred when SFDI was either Very High or Severe. Finally, we present an operational system that uses short-term, numerical weather predictions to produce daily SFDI forecasts and show that 76.2% of all satellite active fire detections during the first 48 h following the ignition of nine high-profile case study fires in 2017 and 2018 occurred under Very High or Severe SFDI conditions. The case studies indicate that the extreme weather events that caused tremendous damage and loss of life could be mapped ahead of time, which would allow both wildland fire managers and vulnerable communities additional time to prepare for potentially dangerous conditions. Ultimately, this simple metric can provide critical decision support information to wildland firefighters and fire-prone communities and could form the basis of an early-warning system that can improve situational awareness and potentially save lives.


2017 ◽  
Vol 26 (4) ◽  
pp. 331 ◽  
Author(s):  
C. M. Thomas ◽  
J. J. Sharples ◽  
J. P. Evans

Dynamic fire behaviour involves rapid changes in fire behaviour without significant changes in ambient conditions, and can compromise firefighter and community safety. Dynamic fire behaviour cannot be captured using spatial implementations of empirical fire-spread models predicated on the assumption of an equilibrium, or quasi-steady, rate of spread. In this study, a coupled atmosphere–fire model is used to model the dynamic propagation of junction fires, i.e. when two firelines merge at an oblique angle. This involves very rapid initial rates of spread, even with no ambient wind. The simulations are in good qualitative agreement with a previous experimental study, and indicate that pyro-convective interaction between the fire and the atmosphere is the key mechanism driving the dynamic fire propagation. An examination of the vertical vorticity in the simulations, and its relationship to the fireline geometry, gives insight into this mechanism. Junction fires have been modelled previously using curvature-dependent rates of spread. In this study, however, although fireline geometry clearly influences rate of spread, no relationship is found between local fireline curvature and the simulated instantaneous local rate of spread. It is possible that such a relationship may be found at larger scales.


2019 ◽  
Vol 28 (12) ◽  
pp. 913 ◽  
Author(s):  
Marc-André Parisien ◽  
Denyse A. Dawe ◽  
Carol Miller ◽  
Christopher A. Stockdale ◽  
O. Bradley Armitage

Wildland fire scientists and land managers working in fire-prone areas require spatial estimates of wildfire potential. To fulfill this need, a simulation-modelling approach was developed whereby multiple individual wildfires are modelled in an iterative fashion across a landscape to obtain location-based measures of fire likelihood and fire behaviour (e.g. fire intensity, biomass consumption). This method, termed burn probability (BP) modelling, takes advantage of fire spread algorithms created for operational uses and the proliferation of available data representing wildfire patterns, fuels and weather. This review describes this approach and provides an overview of its applications in wildland fire research, risk analysis and land management. We broadly classify the application of BP models as (1) direct examination, (2) neighbourhood processes, (3) fire hazard and risk and (4) integration with secondary models. Direct examination analyses are those that require no further processing of model outputs; they range from a simple visual examination of outputs to an assessment of alternate states (i.e. scenarios). Neighbourhood process analyses examine patterns of fire ignitions and subsequent spread across land designations. Fire hazard combines fire probability and a quantitative assessment of fire behaviour, whereas risk is the product of fire likelihood and potential impacts of wildfire. The integration with secondary models represents situations where BP model outputs are integrated into, or used in conjunction with, other models or modelling platforms.


2008 ◽  
Vol 17 (3) ◽  
pp. 305 ◽  
Author(s):  
Haiganoush K. Preisler ◽  
Shyh-Chin Chen ◽  
Francis Fujioka ◽  
John W. Benoit ◽  
Anthony L. Westerling

The National Fire Danger Rating System indices deduced from a regional simulation weather model were used to estimate probabilities and numbers of large fire events on monthly and 1-degree grid scales. The weather model simulations and forecasts are ongoing experimental products from the Experimental Climate Prediction Center at the Scripps Institution of Oceanography. The monthly average Fosberg Fire Weather Index, deduced from the weather simulation, along with the monthly average Keetch–Byram Drought Index and Energy Release Component, were found to be more strongly associated with large fire events on a monthly scale than any of the other stand-alone fire weather or danger indices. These selected indices were used in the spatially explicit probability model to estimate the number of large fire events. Historic probabilities were also estimated using spatially smoothed historic frequencies of large fire events. It was shown that the probability model using four fire danger indices outperformed the historic model, an indication that these indices have some skill. Geographical maps of the estimated monthly wildland fire probabilities, developed using a combination of four indices, were produced for each year and were found to give reasonable matches to actual fire events. This method paves a feasible way to assess the skill of climate forecast outputs, from a dynamical meteorological model, in forecasting the probability of wildland fire severity with known precision.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Mark A. Finney ◽  
Sara S. McAllister

The character of a wildland fire can change dramatically in the presence of another nearby fire. Understanding and predicting the changes in behavior due to fire-fire interactions cannot only be life-saving to those on the ground, but also be used to better control a prescribed fire to meet objectives. In discontinuous fuel types, such interactions may elicit fire spread where none otherwise existed. Fire-fire interactions occur naturally when spot fires start ahead of the main fire and when separate fire events converge in one location. Interactions can be created intentionally during prescribed fires by using spatial ignition patterns. Mass fires are among the most extreme examples of interactive behavior. This paper presents a review of the detailed effects of fire-fire interaction in terms of merging or coalescence criteria, burning rates, flame dimensions, flame temperature, indraft velocity, pulsation, and convection column dynamics. Though relevant in many situations, these changes in fire behavior have yet to be included in any operational-fire models or decision support systems.


2014 ◽  
Vol 14 (9) ◽  
pp. 2359-2371 ◽  
Author(s):  
C. C. Simpson ◽  
J. J. Sharples ◽  
J. P. Evans

Abstract. Vorticity-driven lateral fire spread (VLS) is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep leeward slope in a direction approximately transverse to the background winds. VLS is often accompanied by a downwind extension of the active flaming region and intense pyro-convection. In this study, the WRF-Fire (WRF stands for Weather Research and Forecasting) coupled atmosphere–fire model is used to examine the sensitivity of resolving VLS to both the horizontal and vertical grid spacing, and the fire-to-atmosphere coupling from within the model framework. The atmospheric horizontal and vertical grid spacing are varied between 25 and 90 m, and the fire-to-atmosphere coupling is either enabled or disabled. At high spatial resolutions, the inclusion of fire-to-atmosphere coupling increases the upslope and lateral rate of spread by factors of up to 2.7 and 9.5, respectively. This increase in the upslope and lateral rate of spread diminishes at coarser spatial resolutions, and VLS is not modelled for a horizontal and vertical grid spacing of 90 m. The lateral fire spread is driven by fire whirls formed due to an interaction between the background winds and the vertical circulation generated at the flank of the fire front as part of the pyro-convective updraft. The laterally advancing fire fronts become the dominant contributors to the extreme pyro-convection. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere–fire coupling are required to model VLS with WRF-Fire.


1991 ◽  
Vol 1 (2) ◽  
pp. 97 ◽  
Author(s):  
R Mees

Under severe fire weather conditions arson is believed to be the primary cause of large wildland fires in southern California. Wildland fire suppression personnel and the public use the the expression "This weather brings out the arsonists" to indicate their awareness of the high potential for large arson-caused fires under these conditions. To determine the accuracy of this statement, fire occurrence and weather data were analyzed for four southern California National Forests for a 10-year period (1975–1984). The results showed that the proportion of arson and non-arson person-caused fires remained the same under most fire-danger conditions; however, a much higher percentage of arson fires became large fires when fire danger was severe. Furthermore, the timing of the arsonist contributed to the frequent occurrence of large arson fires. The data presented here refute the idea that most arson fires occur under severe weather conditions and at the same time-validate the utility of maintaining arson prevention programs during most weather conditions.


Sign in / Sign up

Export Citation Format

Share Document