scholarly journals Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere–fire numerical model

2014 ◽  
Vol 14 (9) ◽  
pp. 2359-2371 ◽  
Author(s):  
C. C. Simpson ◽  
J. J. Sharples ◽  
J. P. Evans

Abstract. Vorticity-driven lateral fire spread (VLS) is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep leeward slope in a direction approximately transverse to the background winds. VLS is often accompanied by a downwind extension of the active flaming region and intense pyro-convection. In this study, the WRF-Fire (WRF stands for Weather Research and Forecasting) coupled atmosphere–fire model is used to examine the sensitivity of resolving VLS to both the horizontal and vertical grid spacing, and the fire-to-atmosphere coupling from within the model framework. The atmospheric horizontal and vertical grid spacing are varied between 25 and 90 m, and the fire-to-atmosphere coupling is either enabled or disabled. At high spatial resolutions, the inclusion of fire-to-atmosphere coupling increases the upslope and lateral rate of spread by factors of up to 2.7 and 9.5, respectively. This increase in the upslope and lateral rate of spread diminishes at coarser spatial resolutions, and VLS is not modelled for a horizontal and vertical grid spacing of 90 m. The lateral fire spread is driven by fire whirls formed due to an interaction between the background winds and the vertical circulation generated at the flank of the fire front as part of the pyro-convective updraft. The laterally advancing fire fronts become the dominant contributors to the extreme pyro-convection. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere–fire coupling are required to model VLS with WRF-Fire.

2014 ◽  
Vol 2 (5) ◽  
pp. 3499-3531 ◽  
Author(s):  
C. C. Simpson ◽  
J. J. Sharples ◽  
J. P. Evans

Abstract. Fire channelling is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep lee-facing slope in a direction transverse to the background winds, and is often accompanied by a downwind extension of the active flaming region and extreme pyro-convection. Recent work using the WRF-Fire coupled atmosphere-fire model has demonstrated that fire channelling can be characterised as vorticity-driven lateral fire spread (VDLS). In this study, 16 simulations are conducted using WRF-Fire to examine the sensitivity of resolving VDLS to spatial resolution and atmosphere-fire coupling within the WRF-Fire model framework. The horizontal grid spacing is varied between 25 and 90 m, and the two-way atmosphere-fire coupling is either enabled or disabled. At high spatial resolution, the atmosphere-fire coupling increases the peak uphill and lateral spread rate by a factor of up to 2.7 and 9.5. The enhancement of the uphill and lateral spread rate diminishes at coarser spatial resolution, and VDLS is not modelled for a horizontal grid spacing of 90 m. The laterally spreading fire fronts become the dominant contributors of the extreme pyro-convection. The resolved fire-induced vortices responsible for driving the lateral spread in the coupled simulations have non-zero vorticity along each unit vector direction, and develop due to an interaction between the background winds and vertical return circulations generated at the flank of the fire front as part of the pyro-convective updraft. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere-fire coupling are required to reproduce VDLS within the current WRF-Fire model framework.


2016 ◽  
Vol 25 (1) ◽  
pp. 62 ◽  
Author(s):  
Joseph J. O'Brien ◽  
E. Louise Loudermilk ◽  
Benjamin Hornsby ◽  
Andrew T. Hudak ◽  
Benjamin C. Bright ◽  
...  

Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at wide spatial extents and high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about fire effects and useful for examining patterns of fire spread. In this study we describe our methods for capturing and analysing spatially and temporally explicit long-wave infrared (LWIR) imagery from the RxCADRE (Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment) project and examine the usefulness of these data in investigating fire behaviour and effects. We compare LWIR imagery captured at fine and moderate spatial and temporal resolutions (from 1 cm2 to 1 m2; and from 0.12 to 1 Hz) using both nadir and oblique measurements. We analyse fine-scale spatial heterogeneity of fire radiant power and energy released in several experimental burns. There was concurrence between the measurements, although the oblique view estimates of fire radiative power were consistently higher than the nadir view estimates. The nadir measurements illustrate the significance of fuel characteristics, particularly type and connectivity, in driving spatial variability at fine scales. The nadir and oblique measurements illustrate the usefulness of the data for describing the location and movement of the fire front at discrete moments in time at these fine and moderate resolutions. Spatially and temporally resolved data from these techniques show promise to effectively link the combustion environment with post-fire processes, remote sensing at larger scales and wildland fire modelling efforts.


Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 69
Author(s):  
Daryn Sagel ◽  
Kevin Speer ◽  
Scott Pokswinski ◽  
Bryan Quaife

Most wildland and prescribed fire spread occurs through ground fuels, and the rate of spread (RoS) in such environments is often summarized with empirical models that assume uniform environmental conditions and produce a unique RoS. On the other hand, representing the effects of local, small-scale variations of fuel and wind experienced in the field is challenging and, for landscape-scale models, impractical. Moreover, the level of uncertainty associated with characterizing RoS and flame dynamics in the presence of turbulent flow demonstrates the need for further understanding of fire dynamics at small scales in realistic settings. This work describes adapted computer vision techniques used to form fine-scale measurements of the spatially and temporally varying RoS in a natural setting. These algorithms are applied to infrared and visible images of a small-scale prescribed burn of a quasi-homogeneous pine needle bed under stationary wind conditions. A large number of distinct fire front displacements are then used statistically to analyze the fire spread. We find that the fine-scale forward RoS is characterized by an exponential distribution, suggesting a model for fire spread as a random process at this scale.


2017 ◽  
Vol 26 (11) ◽  
pp. 973 ◽  
Author(s):  
Miguel G. Cruz ◽  
Martin E. Alexander ◽  
Andrew L. Sullivan

Generalised statements about the state of fire science are often used to provide a simplified context for new work. This paper explores the validity of five frequently repeated statements regarding empirical and physical models for predicting wildland fire behaviour. For empirical models, these include statements that they: (1) work well over the range of their original data; and (2) are not appropriate for and should not be applied to conditions outside the range of the original data. For physical models, common statements include that they: (3) provide insight into the mechanisms that drive wildland fire spread and other aspects of fire behaviour; (4) give a better understanding of how fuel treatments modify fire behaviour; and (5) can be used to derive simplified models to predict fire behaviour operationally. The first statement was judged to be true only under certain conditions, whereas the second was shown not to be necessarily correct if valid data and appropriate modelling forms are used. Statements three through five, although theoretically valid, were considered not to be true given the current state of knowledge regarding fundamental wildland fire processes.


2006 ◽  
Vol 15 (2) ◽  
pp. 179 ◽  
Author(s):  
J. Ramiro Martínez-de Dios ◽  
Jorge C. André ◽  
João C. Gonçalves ◽  
Begoña Ch. Arrue ◽  
Aníbal Ollero ◽  
...  

This paper presents an experimental method using computer-based image processing techniques of visual and infrared movies of a propagating fire front, taken from one or more cameras, to supply the time evolutions of the fire front shape and position, flame inclination angle, height, and base width. As secondary outputs, it also provides the fire front rate of spread and a 3D graphical model of the fire front that can be rendered from any virtual view. The method is automatic and non-intrusive, has space–time resolution close to continuum and can be run in real-time or deferred modes. It is demonstrated in simple laboratory experiments in beds of pine needles set upon an inclinable burn table, with point and linear ignitions, but can be extended to open field situations.


2011 ◽  
Vol 4 (1) ◽  
pp. 497-545 ◽  
Author(s):  
J. Mandel ◽  
J. D. Beezley ◽  
A. K. Kochanski

Abstract. We describe the physical model, numerical algorithms, and software structure of WRF-Fire. WRF-Fire consists of a fire-spread model, implemented by the level-set method, coupled with the Weather Research and Forecasting model. In every time step, the fire model inputs the surface wind, which drives the fire, and outputs the heat flux from the fire into the atmosphere, which in turn influences the atmosphere. The level-set method allows submesh representation of the burning region and flexible implementation of various kinds of ignition. WRF-Fire is distributed as a part of WRF and it uses the WRF parallel infrastructure for parallel computing.


2013 ◽  
Vol 22 (4) ◽  
pp. 428 ◽  
Author(s):  
Holly A. Perryman ◽  
Christopher J. Dugaw ◽  
J. Morgan Varner ◽  
Diane L. Johnson

In spite of considerable effort to predict wildland fire behaviour, the effects of firebrand lift-off, the ignition of resulting spot fires and their effects on fire spread, remain poorly understood. We developed a cellular automata model integrating key mathematical models governing current fire spread models with a recently developed model that estimates firebrand landing patterns. Using our model we simulated a wildfire in an idealised Pinus ponderosa ecosystem. Varying values of wind speed, surface fuel loading, surface fuel moisture content and canopy base height, we investigated two scenarios: (i) the probability of a spot fire igniting beyond fuelbreaks of various widths and (ii) how spot fires directly affect the overall surface fire’s rate of spread. Results were averages across 2500 stochastic simulations. In both scenarios, canopy base height and surface fuel loading had a greater influence than wind speed and surface fuel moisture content. The expected rate of spread with spot fires occurring approached a constant value over time, which ranged between 6 and 931% higher than the predicted surface fire rate of spread. Incorporation of the role of spot fires in wildland fire spread should be an important thrust of future decision-support technologies.


2018 ◽  
Vol 27 (11) ◽  
pp. 727 ◽  
Author(s):  
Miguel G. Cruz ◽  
Andrew L. Sullivan ◽  
James S. Gould ◽  
Richard J. Hurley ◽  
Matt P. Plucinski

The effect of grass fuel load on fire behaviour and fire danger has been a contentious issue for some time in Australia. Existing operational models have placed different emphases on the effect of fuel load on model outputs, which has created uncertainty in the operational assessment of fire potential and has led to end-user and public distrust of model outcomes. A field-based experimental burning program was conducted to quantify the effect of fuel load on headfire rate of spread and other fire behaviour characteristics in grasslands. A total of 58 experimental fires conducted at six sites across eastern Australia were analysed. We found an inverse relationship between fuel load and the rate of spread in grasslands, which is contrary to current, untested, modelling assumptions. This result is valid for grasslands where fuel load is not a limiting factor for fire propagation. We discuss the reasons for this effect and model it to produce a fuel load effect function that can be applied to operational grassfire spread models used in Australia. We also analyse the effect of fuel load on flame characteristics and develop a model for flame height as a function of rate of fire spread and fuel load.


2009 ◽  
Vol 18 (6) ◽  
pp. 698 ◽  
Author(s):  
Paulo M. Fernandes ◽  
Hermínio S. Botelho ◽  
Francisco C. Rego ◽  
Carlos Loureiro

An experimental burning program took place in maritime pine (Pinus pinaster Ait.) stands in Portugal to increase the understanding of surface fire behaviour under mild weather. The spread rate and flame geometry of the forward and backward sections of a line-ignited fire front were measured in 94 plots 10–15 m wide. Measured head fire rate of spread, flame length and Byram’s fire intensity varied respectively in the intervals of 0.3–13.9 m min–1, 0.1–4.2 m and 30–3527 kW m–1. Fire behaviour was modelled through an empirical approach. Rate of forward fire spread was described as a function of surface wind speed, terrain slope, moisture content of fine dead surface fuel, and fuel height, while back fire spread rate was correlated with fuel moisture content and cover of understorey vegetation. Flame dimensions were related to Byram’s fire intensity but relationships with rate of spread and fine dead surface fuel load and moisture are preferred, particularly for the head fire. The equations are expected to be more reliable when wind speed and slope are less than 8 km h–1 and 15°, and when fuel moisture content is higher than 12%. The results offer a quantitative basis for prescribed fire management.


2020 ◽  
Vol 29 (1) ◽  
pp. 81
Author(s):  
Bret Butler ◽  
Steve Quarles ◽  
Christine Standohar-Alfano ◽  
Murray Morrison ◽  
Daniel Jimenez ◽  
...  

The relationship between wildland fire spread rate and wind has been a topic of study for over a century, but few laboratory studies report measurements in controlled winds exceeding 5ms−1. In this study, measurements of fire rate of spread, flame residence time and energy release are reported for fires burning under controlled atmospheric conditions in shallow beds of pine needles subject to winds ranging from 0 to 27ms−1 (measured 5m above ground level). The data suggested that under constant flow conditions when winds are less than 10ms−1, fire rate of spread increases linearly at a rate of ~3% of the wind speed, which generally agrees with other laboratory-based models. When wind speed exceeds 10ms−1, the fire rate of spread response to wind remains linear but with a much stronger dependence, spreading at a rate of ~13% of the wind speed. Radiative and convective heating correlated directly to wind speed, with radiant heating increasing approximately three-fold as much as convective heating over the range of winds explored. The data suggested that residence time is inversely related to wind speed and appeared to approach a lower limit of ~20s as wind exceeded 15ms−1. Average flame residence time over the range of wind speeds was nominally 26s.


Sign in / Sign up

Export Citation Format

Share Document