Time series of high-resolution images enhances efforts to monitor post-fire condition and recovery, Waldo Canyon fire, Colorado, USA

2018 ◽  
Vol 27 (10) ◽  
pp. 699 ◽  
Author(s):  
Melanie K. Vanderhoof ◽  
Clifton Burt ◽  
Todd J. Hawbaker

Interpretations of post-fire condition and rates of vegetation recovery can influence management priorities, actions and perception of latent risks from landslides and floods. In this study, we used the Waldo Canyon fire (2012, Colorado Springs, Colorado, USA) as a case study to explore how a time series (2011–2016) of high-resolution images can be used to delineate burn extent and severity, as well as quantify post-fire vegetation recovery. We applied an object-based approach to map burn severity and vegetation recovery using Worldview-2, Worldview-3 and QuickBird-2 imagery. The burned area was classified as 51% high, 20% moderate and 29% low burn-severity. Across the burn extent, the shrub cover class showed a rapid recovery, resprouting vigorously within 1 year, whereas 4 years post-fire, areas previously dominated by conifers were divided approximately equally between being classified as dominated by quaking aspen saplings with herbaceous species in the understorey or minimally recovered. Relative to using a pixel-based Normalised Difference Vegetation Index (NDVI), our object-based approach showed higher rates of revegetation. High-resolution imagery can provide an effective means to monitor post-fire site conditions and complement more prevalent efforts with moderate- and coarse-resolution sensors.

2014 ◽  
Vol 23 (5) ◽  
pp. 668 ◽  
Author(s):  
Thomas Katagis ◽  
Ioannis Z. Gitas ◽  
Pericles Toukiloglou ◽  
Sander Veraverbeke ◽  
Rudi Goossens

In this study, the Breaks for Additive Seasonal and Trend (BFAST), a recently introduced trend analysis technique, was employed for the detection of fire-induced changes in a Mediterranean ecosystem. BFAST enables the decomposition of time series into trend, seasonal and noise components, resulting in the detection of gradual and rapid land cover changes. Normalised Difference Vegetation Index (NDVI) time series derived from the MODIS and VEGETATION (VGT) standard products were analysed. The time series decomposition resulted in the mapping of the burned area and the demonstration of the post-fire vegetation recovery trend. The observed gradual changes revealed an increase of NDVI values over time, indicating post-fire vegetation recovery. Spatial validation of the generated burned area maps with a higher resolution reference map was performed and probability statistics were derived. Both maps achieved a high probability of detection – 0.90 for MODIS and 0.87 for VGT – and a low probability of false alarms, 0.01 for MODIS and 0.02 for VGT. In addition, the Pareto boundary theory was implemented to account for the low-resolution bias of the maps. BFAST facilitated detection of fire-induced changes using image time series, without having to set thresholds, select specific seasons or adjust to certain land cover types. Further evaluation of the approach should focus on a more comprehensive assessment across regions and time.


Author(s):  
S. M. Li ◽  
Z. Y. Li ◽  
E. X. Chen ◽  
Q. W. Liu

Forest cover monitoring is an important part of forest management in local or regional area. The structure and tones of forest can be identified in high spatial remote sensing images. When forests cover change, the spectral characteristics of forests is also changed. In this paper a method on object-based forest cover monitoring with data transformation from time series of high resolution images is put forward. First the NDVI difference image and the composite of PC3,PC4, PC5 of the stacked 8 layers of time series of high resolution satellites are segmented into homogeneous objects. With development of the object-based ruleset classification system, the spatial extent of deforestation and afforestation can be identified over time across the landscape. Finally the change accuracy is achieved with reference data.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 320
Author(s):  
Emilio Guirado ◽  
Javier Blanco-Sacristán ◽  
Emilio Rodríguez-Caballero ◽  
Siham Tabik ◽  
Domingo Alcaraz-Segura ◽  
...  

Vegetation generally appears scattered in drylands. Its structure, composition and spatial patterns are key controls of biotic interactions, water, and nutrient cycles. Applying segmentation methods to very high-resolution images for monitoring changes in vegetation cover can provide relevant information for dryland conservation ecology. For this reason, improving segmentation methods and understanding the effect of spatial resolution on segmentation results is key to improve dryland vegetation monitoring. We explored and analyzed the accuracy of Object-Based Image Analysis (OBIA) and Mask Region-based Convolutional Neural Networks (Mask R-CNN) and the fusion of both methods in the segmentation of scattered vegetation in a dryland ecosystem. As a case study, we mapped Ziziphus lotus, the dominant shrub of a habitat of conservation priority in one of the driest areas of Europe. Our results show for the first time that the fusion of the results from OBIA and Mask R-CNN increases the accuracy of the segmentation of scattered shrubs up to 25% compared to both methods separately. Hence, by fusing OBIA and Mask R-CNNs on very high-resolution images, the improved segmentation accuracy of vegetation mapping would lead to more precise and sensitive monitoring of changes in biodiversity and ecosystem services in drylands.


2021 ◽  
Vol 117 (7/8) ◽  
Author(s):  
Nndanduleni Muavhi

This study presents a simple approach of spatiotemporal change detection of vegetation cover based on analysis of time series remotely sensed images. The study was carried out at Thathe Vondo Area, which is characterised by episodic variation of vegetation gain and loss. This variation is attributable to timber and tea plantations and their production cycles, which periodically result in either vegetation gain or loss. The approach presented here was implemented on two ASTER images acquired in 2007 and 2017. It involved the combined use of band combination, unsupervised image classification and Normalised Difference Vegetation Index (NDVI) techniques. True colour composite (TCC) images for 2007 and 2017 were created from combination of bands 1, 2 and 3 in red, blue and green, respectively. The difference image of the TCC images was then generated to show the inconsistencies of vegetation cover between 2007 and 2017. For analytical simplicity and interpretability, the difference image was subjected to ISODATA unsupervised classification, which clustered pixels in the difference image into eight classes. Two ISODATA derived classes were interpreted as vegetation gain and one as vegetation loss. These classes were confirmed as regions of vegetation gain and loss by NDVI values of 2007 and 2017. In addition, the polygons of vegetation gain and loss regions were created and superimposed over the TCC images to further demonstrate the spatiotemporal vegetation change in the area. The vegetation change statistics show vegetation gain and loss of 10.62% and 2.03%, respectively, implying a vegetation gain of 8.59% over the selected decade.


2020 ◽  
Vol 12 (18) ◽  
pp. 3038
Author(s):  
Dhahi Al-Shammari ◽  
Ignacio Fuentes ◽  
Brett M. Whelan ◽  
Patrick Filippi ◽  
Thomas F. A. Bishop

A phenology-based crop type mapping approach was carried out to map cotton fields throughout the cotton-growing areas of eastern Australia. The workflow was implemented in the Google Earth Engine (GEE) platform, as it is time efficient and does not require processing in multiple platforms to complete the classification steps. A time series of Normalised Difference Vegetation Index (NDVI) imagery were generated from Landsat 8 Surface Reflectance Tier 1 (L8SR) and processed using Fourier transformation. This was used to produce the harmonised-NDVI (H-NDVI) from the original NDVI, and then phase and amplitude values were generated from the H-NDVI to visualise active cotton in the targeted fields. Random Forest (RF) models were built to classify cotton at early, mid and late growth stages to assess the ability of the model to classify cotton as the season progresses, with phase, amplitude and other individual bands as predictors. Results obtained from leave-one-season-out cross validation (LOSOCV) indicated that Overall Accuracy (OA), Kappa, Producer’s Accuracies (PA) and User’s Accuracy (UA), increased significantly when adding amplitude and phase as predictor variables to the model, than prediction using H-NDVI or raw bands only. Commission and omission errors were reduced significantly as the season progressed and more in-season imagery was available. The methodology proposed in this study can map cotton crops accurately based on the reconstruction of the unique cotton reflectance trajectory through time. This study confirms the importance of phenological metrics in improving in-season cotton fields mapping across eastern Australia. This model can be used in conjunction with other datasets to forecast yield based on the mapped crop type for improved decision making related to supply chain logistics and seasonal outlooks for production.


Drones ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 43 ◽  
Author(s):  
Sathishkumar Samiappan ◽  
Lee Hathcock ◽  
Gray Turnage ◽  
Cary McCraine ◽  
Jonathan Pitchford ◽  
...  

Wildfires can be beneficial for native vegetation. However, wildfires can impact property values, human safety, and ecosystem function. Resource managers require safe, easy to use, timely, and cost-effective methods for quantifying wildfire damage and regeneration. In this work, we demonstrate an approach using an unmanned aerial system (UAS) equipped with a MicaSense RedEdge multispectral sensor to classify and estimate wildfire damage in a coastal marsh. We collected approximately 7.2 km2 of five-band multispectral imagery after a wildfire event in February 2016, which was used to create a photogrammetry-based digital surface model (DSM) and orthomosaic for object-based classification analysis. Airborne light detection and ranging data were used to validate the accuracy of the DSM. Four-band airborne imagery from pre- and post-fire were used to estimate pre-fire health, post-fire damage, and track the vegetation recovery process. Immediate and long-term post-fire classifications, area, and volume of burned regions were produced to track the revegetation progress. The UAS-based classification produced from normalized difference vegetation index and DSM was compared to the Landsat-based Burned Area Reflectance Classification. Experimental results show the potential of using UAS and the presented approach compared to satellite-based mapping in terms of classification accuracies, turnaround time, and spatial and temporal resolutions.


2020 ◽  
Vol 12 (9) ◽  
pp. 1409
Author(s):  
Ewerton Silva ◽  
Ricardo da S. Torres ◽  
Bruna Alberton ◽  
Leonor Patricia C. Morellato ◽  
Thiago S. F. Silva

One of the challenges in remote phenology studies lies in how to efficiently manage large volumes of data obtained as long-term sequences of high-resolution images. A promising approach is known as image foveation, which is able to reduce the computational resources used (i.e., memory storage) in several applications. In this paper, we propose an image foveation approach towards plant phenology tracking where relevant changes within an image time series guide the creation of foveal models used to resample unseen images. By doing so, images are taken to a space-variant domain where regions vary in resolution according to their contextual relevance for the application. We performed our validation on a dataset of vegetation image sequences previously used in plant phenology studies.


2015 ◽  
Vol 3 (2) ◽  
pp. 58-67 ◽  
Author(s):  
Jan Rudolf Karl Lehmann ◽  
Keturah Zoe Smithson ◽  
Torsten Prinz

Remote sensing techniques have become an increasingly important tool for surveying archaeological sites. However, budgeting issues in archaeological research often limit the application of satellite or airborne imagery. Unmanned aerial systems (UAS) provide a flexible, quick, and more economical alternative to commonly used remote sensing techniques. In this study, the buried features of the archaeological site of the Kleinburlo monastery, near Münster, Germany, were identified using high-resolution color–infrared (CIR) images collected from a UAS platform. Based on these CIR images, a modified normalised difference vegetation index (NDVIblue) was calculated, showing reflectance spectra of vegetation anomalies caused by water stress. In the presented study, the vegetation growing on top of the buried walls was better nourished than the surrounding plants because very wet conditions over the days previous to data collection caused higher levels of water stress in the surrounding water-drenched land. This difference in water stress was a good indicator for detecting archaeological remains.


2020 ◽  
Vol 12 (12) ◽  
pp. 1975
Author(s):  
Alexandru Hegyi ◽  
Apostolos Sarris ◽  
Florin Curta ◽  
Cristian Floca ◽  
Sorin Forțiu ◽  
...  

This study presents a new way to reconstruct the extent of medieval archaeological sites by using approaches from the field of geoinformatics. Hence, we propose a combined use of non-invasive methodologies which are used for the first time to study a medieval village in Romania. The focus here will be on ground-based and satellite remote-sensing techniques. The method relies on computing vegetation indices (proxies), which have been utilized for archaeological site detection in order to detect the layout of a deserted medieval town located in southwestern Romania. The data were produced by a group of small satellites (3U CubeSats) dispatched by Planet Labs which delivered high-resolution images of the Earth’s surface. The globe is encompassed by more than 150 satellites (dimensions: 10 × 10 × 30 cm) which catch different images for the same area at moderately short intervals at a spatial resolution of 3–4 m. The four-band Planet Scope satellite images were employed to calculate a number of vegetation indices such as NDVI (Normalized Difference Vegetation Index), DVI (Difference Vegetation Index), SR (Simple Vegetation Ratio) and others. For better precision, structure from motion (SfM) techniques were applied to generate a high-resolution orthomosaic and a digital surface model in which the boundaries of the medieval village of “Șanțul Turcilor” in Mașloc, Romania, can be plainly observed. Additionally, this study contrasts the outcomes with a geophysical survey that was attempted inside the central part of the medieval settlement. The technical results of this study also provide strong evidence from an historical point of view: the first documented case of village systematization during the medieval period within Eastern Europe (particularly Romania) found through geoscientific methods.


Author(s):  
M. Boldt ◽  
A. Thiele ◽  
K. Schulz ◽  
S. Hinz

In the last years, the spatial resolution of remote sensing sensors and imagery has continuously improved. Focusing on spaceborne Synthetic Aperture Radar (SAR) sensors, the satellites of the current generation (TerraSAR-X, COSMO-SykMed) are able to acquire images with sub-meter resolution. Indeed, high resolution imagery is visually much better interpretable, but most of the established pixel-based analysis methods have become more or less impracticable since, in high resolution images, self-sufficient objects (vehicle, building) are represented by a large number of pixels. Methods dealing with Object-Based Image Analysis (OBIA) provide help. Objects (segments) are groupings of pixels resulting from image segmentation algorithms based on homogeneity criteria. The image set is represented by image segments, which allows the development of rule-based analysis schemes. For example, segments can be described or categorized by their local neighborhood in a context-based manner. <br><br> In this paper, a novel method for the segmentation of high resolution SAR images is presented. It is based on the calculation of morphological differential attribute profiles (DAP) which are analyzed pixel-wise in a region growing procedure. The method distinguishes between heterogeneous and homogeneous image content and delivers a precise segmentation result.


Sign in / Sign up

Export Citation Format

Share Document