Characteristics of sap trees used by yellow-bellied gliders in southern Queensland

2005 ◽  
Vol 32 (1) ◽  
pp. 23 ◽  
Author(s):  
Teresa J. Eyre ◽  
Ross L. Goldingay

An extensive survey was conducted to locate sap trees used by the yellow-bellied glider (Petaurus australis) throughout the forests and woodlands of southern Queensland, across an area of 43.7 million hectares. We recorded the characteristics of 478 sap trees located at 109 of 297 sites surveyed. Only 13 tree species were selected by gliders for sap feeding throughout the study region, with the grey gum species Eucalyptus longirostrata and E. biturbinata most likely to be incised for sap. Of the tree species used for sap feeding by gliders, trees >40 cm in diameter at breast height (dbh) were used more than would be expected on the basis of their abundance in the forest. The number of sap trees with active and recently active feed scars at a site ranged from 0 to 12. Factors that appear to influence the abundance of active and recently active sap trees at a site include intensity of disturbance (basal area of cut stumps and dead trees), the number of stems in the 41–60 and 61–80 cm dbh classes, and number of Myrtaceae species. The response to these variables could be indicative of habitat quality, and the availability of alternative foraging substrates such as flower cover and decorticating bark. Intensification of selective logging in south-east Queensland, as an outcome of the Southeast Queensland Regional Forest Agreement, could potentially marginalise glider habitat. This would necessitate the retention of potential, or ‘recruit’, sap trees to maintain yellow-bellied glider habitat in these areas.

2003 ◽  
Vol 30 (3) ◽  
pp. 229 ◽  
Author(s):  
Teresa J. Eyre ◽  
Ross L. Goldingay

Identifying the tree species used in sap feeding by the yellow-bellied glider (Petaurus australis) and describing the pattern of use of these trees is fundamental to forest management in eastern and southern Australia. We conducted surveys at 74 sites across 17�000 ha in St Mary State Forest near Maryborough in south-east Queensland, during five visits over a 2-year period. We identified sap-feeding incisions of gliders on 194 trees (2% of all trees) at 47 of our survey sites, including five trees recruited as sap trees during our monitoring period. Five tree species were involved: Corymbia citriodora (100 trees at 26 sites), Eucalyptus longirostrata (73 trees at 19 sites), Eucalyptus moluccana (17 trees at 6 sites), Eucalyptus tereticornis (3 trees at 3 sites), and Angophora leiocarpa (1 tree). Of these trees, E. longirostrata was used much more than expected on the basis of its abundance in the forest. Active glider incisions were observed on 95 of the sap trees (49% of total) during the monitoring period. During our first visit, 66 sap trees showed no evidence of current or recent use (within the previous month). By the fifth visit, there were still 44 sap trees (23% of all sap trees) that showed no evidence of recent use during any visit. Approximately 40% of sap tree observations were of trees with fewer than five recently active incisions, which is currently the threshold number of incisions for tree retention during logging operations in Queensland. We used Poisson regression to assess the influence of climatic and habitat variables on the abundance of active incisions at sites with sap trees. Three variables had a significant influence on the abundance of active incisions at a site: flowering, site index (a measure of productivity) and density of ringbarked trees. Our results confirm the importance of a small number of forest trees in sap feeding and recommendations are provided to enhance prescriptions for effective management of sap food resources of yellow-bellied gliders in south-east Queensland.


1998 ◽  
Vol 14 (2) ◽  
pp. 247-260 ◽  
Author(s):  
EDWARD L. WEBB

For sustainable logging to be achieved in tropical forests, there must be successful gap-phase regeneration to restock the logged-over area. This study examined three aspects of gap-phase regeneration in selectively logged lowland swamp forest of northeast Costa Rica. First, logging gaps were censused immediately after extraction to determine the density of advanced regeneration. Stem density and basal area of residual trees ≥ 10 cm dbh in logging gaps was >85% lower than undisturbed forest, and all trees in gaps had sustained structural damage. The common canopy species Pentaclethra macroloba (Fabaceae) was the most abundant species in gaps whereas the timber tree Carapa nicaraguensis (Meliaceae) was absent from all censused gaps. This suggests that canopy replacement, particularly by Carapa, will depend on trees <10 cm dbh or by seed input into logging gaps. Second, the diversity of the understorey was compared with 6-y old single-tree and multiple-tree logging gaps. Multiple-tree logging gaps were the most diverse, but dominated by two ruderal species; however many shade-tolerant species were present in those gaps. This indicates that controlled selective logging can result in a localized shift in species composition, but that logging gaps should return to pre-logging composition with time under a carefully implemented, controlled harvesting regime. Finally, this study found a significant effect of a fringing Carapa tree on logging gap seedling density. Thus, seed arrival into gaps is a barrier to logging gap regeneration, particularly for a large-seeded tree species. Gap-phase regeneration by a large-seeded tree species in managed forest would benefit from seed broadcasting into gaps.


1974 ◽  
Vol 4 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Alan R. Ek

Nonlinear equation models were developed for prediction of periodic ingrowth, mortality, and survivor growth by 2-in. (5.1-cm) diameter classes in northern hardwood stands. Equations were constructed using 5 year growth records on 132 plots from stands with a broad range of age and size class distributions. The model for number of ingrowth trees in the smallest diameter class measured was [Formula: see text] where G and N are initial stand basal area and number of trees, respectively, on a per acre basis and the bi's are constants. Mortality in a diameter class expressed as trees per acre was described by the model [Formula: see text] where g and n indicate initial basal area and number of trees in a specified diameter class. Survivor growth was described by prediction of the number of trees in a class which grow into the next larger size class during the growth period. The model for the number of stems moving up was [Formula: see text] where S is a site class term. Considerations in the formulation of the models and a discussion of their utility and limitations are also presented.


2019 ◽  
Vol 25 (3) ◽  
Author(s):  
Magdaleno Mendoza-Hernández ◽  
Patricia Gerez-Fernández ◽  
Silvia Purata-Velarde ◽  
Tarin Toledo-Aceves

Tropical montane cloud forests (TMCF) are under severe threat from deforestation, fragmentation and degradation. Several tree species are harvested and commercialized by local communities through unplanned selective logging. Lack of information regarding the growth rates of the most economically valuable timber species hampers the design of effective sustainable management schemes for TMCF. The objective of this study was to determine the diameter growth rates and evaluate the influence of tree size, crown class and neighbouring tree basal area on the growth of common and valuable TMCF timber species. Annual diameter growth was measured during two years in 60 trees (10 to 45 cm in diameter at breast height; dbh) each of Alnus acuminata, Liquidambar styraciflua and Quercus xalapensis, located in two unmanaged secondary TMCF sites in Veracruz, Mexico. High diameter growth rates (centimeter per year [cm yr-1]; mean ± SE) were recorded in the three species; the highest was recorded in A. acuminata (1.62 cm yr-1 ± 0.08 cm yr-1), followed by Q. xalapensis (0.91 cm yr-1 ± 0.07 cm yr-1) and L. styraciflua (0.71 cm yr-1 ± 0.08 cm yr-1). Diameter growth rate was inversely related to the basal area of the neighbouring trees, indicating a negative effect of competition in the three species. Dominant trees had higher growth rates than supressed trees in the three species. The high growth rates recorded in forests with no previous management and the negative effect of basal area of neighbouring trees support the potential for silvicultural management in secondary TMCF.


2011 ◽  
Vol 162 (9) ◽  
pp. 326-336
Author(s):  
Philippe Duc ◽  
Urs-Beat Brändli ◽  
Fabrizio Cioldi ◽  
Adrian Lanz ◽  
Ulrich Ulmer

Development of tree species in Swiss forests – some methodological considerations Swiss forests have been subject to more stress in recent decades due to increased climatic and biogenic disturbances. Some tree species, such as Norway spruce, have been more severely affected than others. How the tree species composition of the Swiss forest has changed during this time has been assessed with data from the Swiss National Forest Inventory (NFI). The four indicators, presence, dominance, number of stems and basal area, were examined to see: whether the changes in the most important tree species are significant; whether the indicators have developed in the same way in the two diameter classes, D1 (12–36 cm DBH) and D2 (&gt; 36 cm DBH); and how different diameter thresholds (12 or 36 cm DBH) and different circular sample plot sizes (200 m2 or 500 m2) affect the development and significance of the indicators. All the values were estimated for the 5370 NFI forest plots that were accessible in all three inventories, NFI1 (1983–85), NFI2 (1993–95) and NFI3 (2004–06). Only in a minority of tree species did changes in the presence, dominance, number of stems and basal area develop in the same way. Most indicators for the conifer species spruce, fir and pine decreased significantly, whereas for the broadleaf species, maple and ash, as well as larch and the other conifers, they increased significantly. The basal area increased during the period investigated for all tree species except pine and spruce. The different development of the indicators number of stems and basal area can be attributed to a different development within the DBH classes D1 and D2. The inventory diameter threshold strongly affects the development of the indicator number of stems, but not that of the indicator basal area.


2020 ◽  
Vol 14 (1) ◽  
pp. 34
Author(s):  
Faezah Pardi

This study was conducted at Pulau Jerejak, Penang to determine the floristic variation of its tree communities. A 0.5-hectare study plot was established and divided into 11 subplots. A total of 587 trees with diameter at breast height (DBH) of 5 cm and above were measured, identified and recorded. The tree communities comprised of 84 species, 63 genera and 32 families. The Myrtaceae was the most speciose family with 10 recorded species while Syzgium glaucum (Myrtaceae) was the most frequent species. The Myrtaceae recorded the highest density of 306 individuals while Syzgium glaucum (Myrtaceae) had the highest species density of 182 individuals. Total tree basal area (BA) was 21.47 m2/ha and family with the highest BA was Myrtaceae with 5.81 m2/ha while at species level, Syzgium glaucum (Myrtaceae) was the species with the highest total BA in the plot with value of 4.95 m2/ha. The Shannon˗Weiner Diversity Index of tree communities showed a value of 3.60 (H'max = 4.43) and Evenness Index of 0.81 which indicates high uniformity of tree species. The Margalef Richness Index (R') revealed that the tree species richness was 13.02. Myrtaceae had the highest Importance Value of 20.4%. The Canonical Correspondence Analysis (CCA) showed that Diospyros buxifolia (Ebenaceae) and Pouteria malaccensis (Sapotaceae) were strongly correlated to low pH. Dysoxylum cauliflorum (Meliaceae) and Eriobotrya bengalensis (Rosaceae) were correlated to phosphorus (P) and calcium ion (Ca2+), respectively. Therefore, the trees species composition at Pulau Jerejak showed that the biodiversity is high and conservation action should be implemented to protect endangered tree species. Keywords: Floristic variation; Tree communities; Trees composition; Pulau Jerejak; Species diversity


Author(s):  
Barry T. Wilson ◽  
Andrew J. Lister ◽  
Rachel I. Riemann ◽  
Douglas M. Griffith

2018 ◽  
pp. 107-130 ◽  
Author(s):  
T. V. Chernenkova ◽  
O. V. Morozova ◽  
N. G. Belyaeva ◽  
M. Yu. Puzachenko

This study aimed at an investigation of the structure, ecology and mapping of mixed communities with the participation of spruce, pine and broad-leave trees in one of the regions of broad-leave–coniferous zone. Despite the long history of the nature use of the study area, including forestry practices (Kurnayev, 1968; Rysin, Saveliyeva, 2007; Arkhipova, 2014; Belyaeva, Popov, 2016), the communities kept the main features of the indigenous forests of the broad-leave–coniferous zone ­— the tree species polydominance of the stands, the multilayer structure of communities and the high species diversity. In the course of field works in the southwestern part of the Moscow Region (2000–2016) 120 relevés were made. Spatial structure, species composition as well as cover values (%) of all vascular plants and bryophytes were recorded in each stand. The relevés were analysed following the ecology-phytocenotic classification approach and methods of multivariate statistical analysis that allowed correctly to differentiate communities according the broad-leave species participation. The accuracy of the classification based on the results of discriminant analysis was 95.8 %. Evaluation of the similarity of the selected units was carried out with the help of cluster analysis (Fig. 12). Clustering into groups is performed according to the activity index of species (A) (Malyshev, 1973) within the allocated syntaxon using Euclidean distance and Ward’s method. The classification results are corrected by DCA ordination in PC-ORD 5.0 (McCune, Mefford, 2006) (Fig. 1). Spatial mapping of forest cover was carried out on the basis of ground data, Landsat satellite images (Landsat 5 TM, 7 ETM +, 8 OLI_TIRS), digital elevation (DEM) and statistical methods (Puzachenko et al., 2014; Chernenkova et al., 2015) (Fig. 13 а, б). The obtained data and the developed classification refine the existing understanding of the phytocenotic structure of the forest cover of the broad-leave–coniferous zone. Three forest formation groups with different shares of broad-leave species in the canopy with seven groups of associations were described: a) coniferous forests with broad-leave species (small- and broad-herb spruce forests with oak and lime (1)); broad-herb spruce forests with oak and lime (2); small- and broad-herb pine forests with spruce, lime, oak and hazel (3); broad-herb pine forests with lime, oak and hazel (4)), b) broad-leave–coniferous forests (broad-herb spruce–broad-leave forests (5)), and c) broad-leave forests (broad-herb oak forests (6), broad-herb lime forests (7)). In the row of discussed syntaxa from 1 to 7 group, the change in the ratio of coniferous and broad-leave species of the tree layer (A) reflects re­gular decrease in the participation of spruce in the plant cover (from 66 to 6 %; Fig. 3 A1, A2) and an increase in oak and lime more than threefold (from 15 to 65 %; Fig. 4 a). Nemoral species predominate in the composition of ground layers, the cove­rage of which increases (from 40 to 80 %) in the range from 1 to 7 group, the coverage of the boreal group varies from 55 to 8 % (Fig. 11) while maintaining the presence of these species, even in nemoral lime and oak forests. In forests with equal share of broad-leave and coniferous trees (group 5) the nemoral species predominate in herb layer. In oak forests (group 6) the species of the nitro group are maximally represented, which is natural for oak forests occurring on rich soils, and also having abundant undergrowth of hazel. Practically in all studied groups the presence of both coniferous (in particular, spruce) and broad-leave trees in undergrowth (B) and ground layer (C) were present in equal proportions (Fig. 3). This does not confirm the unambiguity of the enrichment with nemoral species and increase in their cover in complex spruce and pine forests in connection with the climate warming in this region, but rather indicates on natural change of the main tree species in the cenopopulations. Further development of the stand and the formation of coni­ferous or broad-leave communities is conditioned by landscape. It is proved that the distribution of different types of communities is statistically significant due to the relief. According to the results of the analysis of remote information, the distribution areas of coniferous forests with broad-leave species, mixed and broad-leave forest areas for the study region are represented equally. The largest massifs of broad-leave–coniferous forests are located in the central and western parts of the study area, while in the eastern one the broad-leave forests predominate, that is a confirmation of the zonal ecotone (along the Pakhra River: Petrov, Kuzenkova, 1968) from broad-leave–coniferous forests to broad-leave forests.


1970 ◽  
Vol 20 ◽  
Author(s):  
R. Goossens

Contribution to the automation of the calculations involving  the forest inventory with the aid of an office computer - In this contribution an attempt was made to perform the  calculations involving the forest inventory by means of an office computer  Olivetti P203.     The general program (flowchart 1), identical for all tree species except  for the values of the different parameters, occupies the tracks A and B of a  magnetic card used with this computer. For each tree species one magnetic  card is required, while some supplementary cards are used for the  subroutines. The first subroutine (flowchart 1) enables us to preserve  temporarily the subtotals between two tree species (mixed stands) and so  called special or stand cards (SC). After the last tree species the totals  per ha are calculated and printed on the former, the average trees occuring  on the line below. Appendix 1 gives an example of a similar form resulting  from calculations involving a sampling in a mixed stand consisting of Oak  (code 11), Red oak (code 12), Japanese larch (code 24) and Beech (code 13).  On this form we find from the left to the right: the diameter class (m), the  number of trees per ha, the basal area (m2/ha), the current annual increment  of the basal area (m2/year/ha), current annual volume increment (m3/year/ha),  the volume (m3/ha) and the money value of the standing trees (Bfr/ha). On the  line before the last, the totals of the quantities mentioned above and of all  the tree species together are to be found. The last line gives a survey of  the average values dg, g, ig, ig, v and w.     Besides this form each stand or plot has a so-called 'stand card SC' on  wich the totals cited above as well as the area of the stand or the plot and  its code are stored. Similar 'stand card' may replace in many cases  completely the classical index cards; moreover they have the advantage that  the data can be entered directly into the computer so that further  calculations, classifications or tabling can be carried out by means of an  appropriate program or subroutine. The subroutine 2 (flowchart 2) illustrates  the use of similar cards for a series of stands or eventually a complete  forest, the real values of the different quantities above are calculated and  tabled (taking into account the area). At the same time the general totals  and the general mean values per ha, as well as the average trees are  calculated and printed. Appendix 2 represents a form resulting from such  calculations by means of subroutine 2.


2019 ◽  
Vol 11 (22) ◽  
pp. 2614 ◽  
Author(s):  
Nina Amiri ◽  
Peter Krzystek ◽  
Marco Heurich ◽  
Andrew Skidmore

Knowledge about forest structures, particularly of deadwood, is fundamental for understanding, protecting, and conserving forest biodiversity. While individual tree-based approaches using single wavelength airborne laserscanning (ALS) can successfully distinguish broadleaf and coniferous trees, they still perform multiple tree species classifications with limited accuracy. Moreover, the mapping of standing dead trees is becoming increasingly important for damage calculation after pest infestation or biodiversity assessment. Recent advances in sensor technology have led to the development of new ALS systems that provide up to three different wavelengths. In this study, we present a novel method which classifies three tree species (Norway spruce, European beech, Silver fir), and dead spruce trees with crowns using full waveform ALS data acquired from three different sensors (wavelengths 532 nm, 1064 nm, 1550 nm). The ALS data were acquired in the Bavarian Forest National Park (Germany) under leaf-on conditions with a maximum point density of 200 points/m 2 . To avoid overfitting of the classifier and to find the most prominent features, we embed a forward feature selection method. We tested our classification procedure using 20 sample plots with 586 measured reference trees. Using single wavelength datasets, the highest accuracy achieved was 74% (wavelength = 1064 nm), followed by 69% (wavelength = 1550 nm) and 65% (wavelength = 532 nm). An improvement of 8–17% over single wavelength datasets was achieved when the multi wavelength data were used. Overall, the contribution of the waveform-based features to the classification accuracy was higher than that of the geometric features by approximately 10%. Our results show that the features derived from a multi wavelength ALS point cloud significantly improve the detailed mapping of tree species and standing dead trees.


Sign in / Sign up

Export Citation Format

Share Document