Road mortality reduces survival and population growth rates of tammar wallabies on Garden Island, Western Australia

2010 ◽  
Vol 37 (7) ◽  
pp. 588 ◽  
Author(s):  
Brian Chambers ◽  
Roberta Bencini

Context Although road mortality has the potential to affect the fate of populations, it is often confounded with other forms of environmental change. Therefore determining its impact separately from other factors is difficult because it requires an understanding of how road mortalities affect age- and sex-specific survival rates. Aims We determined the impact of high numbers of road-kills and habitat modification on the growth and survival of the population of tammar wallabies (Macropus eugenii) on Garden Island, off the coast of Western Australia. The increased supply of food from large areas of fertilised and irrigated lawns on a naval base was expected to increase the population growth rate (λ) and the road-kills were expected to offset the population response. Methods We conducted a mark-and-recapture study over three years to estimate rates of survival, reproduction and population growth rates in areas of the island that were either heavily affected by the presence of a naval base that included a network of roads and buildings, close enough to the naval base that animals could be affected by the disturbance there, and completely unaffected and lacking major roads or buildings. All road-kills were collected to estimate the impact of road mortality on the survival and growth rates of the population. Key results The growth rate, λ, for the population on the naval base was 1.02 ± 0.083 (s.e.) per year, which was much higher than in an area of adjacent bushland at 0.92 ± 0.065 per year and in undisturbed bushland at 0.93 ± 0.100 per year. When the impact of road mortality was removed, λ increased to 1.15 ± 0.101 per year on the naval base and 0.96 ± 0.076 per year in the bushland adjacent to the naval base. On the naval base road mortality reduced survival rates of one-year-old and adult animals by 0.14 ± 0.087 and 0.12 ± 0.012 per year (mean ± s.e.). Conclusions Road mortality counteracted the increase in the size of the tammar population caused by the habitat modification on the naval base. The impact of road mortality on the adjacent bushland population may result in its long-term decline, as the population may not be able to recover from the reduction in survival rates. Implications Road mortality has the potential to threaten susceptible populations but its impact should be quantified so that mitigation measures can be implemented where they will achieve the greatest benefits.

1973 ◽  
Vol 30 (2) ◽  
pp. 195-199 ◽  
Author(s):  
Terry A. Haines

The value of RNA–DNA ratio as a measure of long-term growth of fish populations under semi-natural conditions and when subjected to environmental manipulations was determined. Populations of carp and smallmouth bass of known age distribution were established in artificial ponds maintained at two fertility levels. After 15 months, population growth rates (as percent increase in weight) and RNA–DNA ratios of muscle tissue from selected fish were measured. Each species exhibited a range of population growth rates. The relation between population growth rate and individual fish RNA–DNA ratio for each species was significant. When reproduction occurred, the relation was not significant unless young-of-the-year fish were excluded from population growth rate calculations. Age of fish was also found to have an important effect on RNA–DNA ratio, with the ratio being higher in younger fish.RNA–DNA ratio can be a reliable indicator of long-term population growth in fish when population age structure is known and recruitment is controlled. The method has potential for use in detecting response to environmental changes before growth rate changes become severe.


2014 ◽  
Vol 42 (1) ◽  
pp. 20-30 ◽  
Author(s):  
TAMARA M. WONG ◽  
TAMARA TICKTIN

SUMMARYDemographic comparisons between wild and restored populations of at-risk plant species can reveal key management strategies for effective conservation, but few such studies exist. This paper evaluates the potential restoration success ofAlyxia stellata, a Hawaiian vine. Stage-structured matrix projection models that compared long-term and transient dynamics of wild versus restoredA. stellatapopulations, and restored populations under different levels of canopy cover, were built from demographic data collected over a four year period. Stochastic models of wild populations projected stable or slightly declining long-term growth rates depending on frequency of dry years. Projected long-term population growth rates of restored populations were significantly higher in closed than open canopy conditions, but indicated population decline under both conditions. Life table response experiments illustrated that lower survival rates, especially of small adults and juveniles, contributed to diminished population growth rates in restored populations. Transient analyses for restored populations projected short-term decline occurring even faster than predicted by asymptotic dynamics. Restored populations will not be viable over the long term under conditions commonly found in restoration projects and interventions will likely be necessary. This study illustrates how the combination of long-term population modelling and transient analyses can be effective in providing relevant information for plant demographers and restoration practitioners to promote self-sustaining native populations, including under future climates.


2018 ◽  
Author(s):  
Javier Montero-Pau ◽  
Africa Gomez ◽  
Manuel Serra

Populations of passively dispersed organisms in continental aquatic habitats typically show high levels of neutral genetic differentiation, despite their high dispersal capabilities. Several evolutionary factors, including founder events and local adaptation, and life cycle features such as high population growth rates and the presence of propagule banks, have been proposed to be responsible for this paradox. Here, we have modeled the colonization process in these organisms to assess the impact of migration rate, growth rate, population size, local adaptation and life-cycle features on their population genetic structure. Our simulation results show that the strongest effect on population structure is caused by persistent founder effects, resulting from the interaction of a few population founders, high population growth rates, large population sizes and the presence of diapausing egg banks. In contrast, the role of local adaptation, genetic hitchhiking and migration is limited to small populations in these organisms. Our results indicate that local adaptation could have different impact on genetic structure in different groups of zooplankters.


1989 ◽  
Vol 24 (4) ◽  
pp. 454-459 ◽  
Author(s):  
Richard T. Arbogast

Experiments showed that changes in population growth rate due to detritus produced by insect activity in stored grain varies with species and is a prime factor determining ecological succession of secondary grain pests. Cynaeus angustus (LeConte), Latheticus oryzae Waterhouse, and Tribolium castaneum (Herbst) were reared on a 1:1 mixture of whole and cracked corn. On this diet, T. castaneum showed the highest rate of population growth and L. oryzae the lowest. Population growth of T. castaneum and L. oryzae was stimulated by adding fine dust (collected from infested corn) or dead moths to the diet, and this effect was much greater in L. oryzae than in T. castaneum. Population growth of C. angustus (as indicated by number of adults) was not affected by supplementation of the diet, but larger larval populations were produced on supplemented corn. The results are related to previously reported observations of succession in stored corn.


2002 ◽  
Vol 357 (1425) ◽  
pp. 1307-1319 ◽  
Author(s):  
H. Charles J. Godfray ◽  
Mark Rees

Current issues in population dynamics are discussed in the context of The Royal Society Discussion Meeting 'Population growth rate: determining factors and role in population regulation'. In particular, different views on the centrality of population growth rates to the study of population dynamics and the role of experiments and theory are explored. Major themes emerging include the role of modern statistical techniques in bringing together experimental and theoretical studies, the importance of long-term experimentation and the need for ecology to have model systems, and the value of population growth rate as a means of understanding and predicting population change. The last point is illustrated by the application of a recently introduced technique, integral projection modelling, to study the population growth rate of a monocarpic perennial plant, its elasticities to different life-history components and the evolution of an evolutionarily stable strategy size at flowering.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 429-434 ◽  
Author(s):  
Mary K Kuhner ◽  
Jon Yamato ◽  
Joseph Felsenstein

Abstract We describe a method for co-estimating 4Neμ (four times the product of effective population size and neutral mutation rate) and population growth rate from sequence samples using Metropolis-Hastings sampling. Population growth (or decline) is assumed to be exponential. The estimates of growth rate are biased upwards, especially when 4Neμ is low; there is also a slight upwards bias in the estimate of 4Neμ itself due to correlation between the parameters. This bias cannot be attributed solely to Metropolis-Hastings sampling but appears to be an inherent property of the estimator and is expected to appear in any approach which estimates growth rate from genealogy structure. Sampling additional unlinked loci is much more effective in reducing the bias than increasing the number or length of sequences from the same locus.


2016 ◽  
Author(s):  
Sebastián A. Pardo ◽  
Holly K. Kindsvater ◽  
Elizabeth Cuevas-Zimbrón ◽  
Oscar Sosa-Nishizaki ◽  
Juan Carlos Pérez-Jiménez ◽  
...  

Devil rays (Mobulaspp.) face rapidly intensifying fishing pressure to meet the ongoing international trade and demand for their gill plates. This has been exacerbated by trade regulation of manta ray gill plates following their 2014 CITES listing. Furthermore, the paucity of information on growth, mortality, and fishing effort for devil rays make quantifying population growth rates and extinction risk challenging. Here, we use a published size-at-age dataset for a large-bodied devil ray species, the Spinetail Devil Ray (Mobula japanica), to estimate somatic growth rates, age at maturity, maximum age and natural and fishing mortality. From these estimates, we go on to calculate a plausible distribution of the maximum intrinsic population growth rate (rmax) and place the productivity of this large devil ray in context by comparing it to 95 other chondrichthyan species. We find evidence that larger devil rays have low somatic growth rate, low annual reproductive output, and low maximum population growth rates, suggesting they have low productivity. Devil ray maximum intrinsic population growth ratermaxis very similar to that of manta rays, indicating devil rays can potentially be driven to local extinction at low levels of fishing mortality. We show that fishing rates of a small-scale artisanal Mexican fishery were up to three times greater than the natural mortality rate, and twice as high as our estimate ofrmax, and therefore unsustainable. Our approach can be applied to assess the limits of fishing and extinction risk of any species with indeterminate growth, even with sparse size-at-age data.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6094 ◽  
Author(s):  
Javier Montero-Pau ◽  
Africa Gómez ◽  
Manuel Serra

Populations of passively dispersed organisms in continental aquatic habitats typically show high levels of neutral genetic differentiation despite their high dispersal capabilities. Several evolutionary factors, including founder events, local adaptation, and life cycle features such as high population growth rates and the presence of propagule banks, have been proposed to be responsible for this paradox. Here, we have modeled the colonization process to assess the impact of migration rate, population growth rate, population size, local adaptation and life-cycle features on the population genetic structure in these organisms. Our simulations show that the strongest effect on population structure are persistent founder effects, resulting from the interaction of a few population founders, high population growth rates, large population sizes and the presence of diapausing egg banks. In contrast, the role of local adaptation, genetic hitchhiking and migration is limited to small populations in these organisms. Our results indicate that local adaptation could have different impact on genetic structure in different groups of zooplankters.


present state of the country's statistical and economic system, such exercises are impracticable, and we will therefore focus on the wider distributional features of teh DTYP. Also excluded is any discussion or test of the feasibility fo the DTYP targets in narrow technical terms. In keeping with our mild scepticism over the officially adopted population growth rates, we will assume a growth rate of population of 3.0 per cent per year over the period. This does not alter any of our arguments in a significant fashion. One other statistic has been altered: the growth rate for agriculture. In the DTYP, this is pegged at 4.5 per cent per annum. However, this includes the rapidly expanding export sector which carries a base-year weight of about 12 per cent, and which has a target growth rate of ten per cent per annum. This implies a growth rate of 3.5 per cent for the non-export domestic agricultural sector, and we will utilise this rate in our calculations. Let us return then to the simple analytical device used in our discussion of the inflationary process and compute the * warranted' levels, y*, n* and e*, and compare these with the targets for y, n and e. This is done in Table 12 which offers some strategic insights into the possible distributional dilemmas and implications of the DTYP. With n = 3.5 per cent, y* = 3.8 per cent, implying a warranted per capita GDP growth of under one per cent per annum, in contrast to the targeted 4.5 per cent or more. If we set y = 7.5 per cent, then n* = 5.7 per cent.


Author(s):  
D. Prevedelli ◽  
R. Simonini

The relationship between body size and population growth rate λ has been studied in two species of opportunistic polychaetes, Dinophilus gyrociliatus and Ophryotrocha labronica, which colonize harbour environments. These species exhibit a semi-continuous iteroparous reproductive strategy, are phylogenetically closely-related but differ in body size and in some aspects of their sexuality. Ophryotrocha labronica is about 4 mm in body length, displays only slight sexual dimorphism and its sex ratio is biased towards the female sex in the ratio 2:1. Dinophilus gyrociliatus is about 1 mm in length, the males are extremely small and the sex ratio is strongly biased (3:1) in favour of the females. In spite of the considerable differences in all traits of their life histories and in many demographic parameters, the growth rates of the two populations are very similar. The analyses carried out have shown that the rapid attainment of sexual maturity of D. gyrociliatus gives it an advantage that offsets the greater fecundity of O. labronica. It is very likely that the reproductive peculiarities of D. gyrociliatus help to raise the population growth rates. The ‘saving’ on the male sex achieved both by the shift of the sex ratio in favour of the females and by the reduction in the males' body size would appear to enable D. gyrociliatus to grow at the same rate as O. labronica, a larger and more fecund species.


Sign in / Sign up

Export Citation Format

Share Document