Effectiveness of the Felixer grooming trap for the control of feral cats: a field trial in arid South Australia

2020 ◽  
Vol 47 (8) ◽  
pp. 599
Author(s):  
K. E. Moseby ◽  
H. McGregor ◽  
J. L. Read

Abstract ContextFeral cats pose a significant threat to wildlife in Australia and internationally. Controlling feral cats can be problematic because of their tendency to hunt live prey rather than be attracted to food-based lures. The Felixer grooming trap was developed as a targeted and automated poisoning device that sprays poison onto the fur of a passing cat, relying on compulsive grooming for ingestion. AimsWe conducted a field trial to test the effectiveness of Felixers in the control of feral cats in northern South Australia where feral cats were present within a 2600-ha predator-proof fenced paddock. MethodsTwenty Felixers were set to fire across vehicle tracks and dune crossings for 6 weeks. Cat activity was recorded using track counts and grids of remote camera traps set within the Felixer Paddock and an adjacent 3700-ha Control Paddock where feral cats were not controlled. Radio-collars were placed on six cats and spatial mark–resight models were used to estimate population density before and after Felixer deployment. Key resultsNone of the 1024 non-target objects (bettongs, bilbies, birds, lizards, humans, vehicles) that passed a Felixer during the trial was fired on, confirming high target specificity. Thirty-three Felixer firings were recorded over the 6-week trial, all being triggered by feral cats. The only two radio-collared cats that triggered Felixers during the trial, died. Two other radio-collared cats appeared to avoid Felixer traps possibly as a reaction to previous catching and handling rendering them neophobic. None of the 22 individually distinguishable cats targeted by Felixers was subsequently observed on cameras, suggesting death after firing. Felixer data, activity and density estimates consistently indicated that nearly two-thirds of the cat population was killed by the Felixers during the 6-week trial. ConclusionsResults suggest that Felixers are an effective, target-specific method of controlling feral cats, at least in areas in which immigration is prevented. The firing rate of Felixers did not decline significantly over time, suggesting that a longer trial would have resulted in a higher number of kills. ImplicationsFuture studies should aim to determine the trade-off between Felixer density and the efficacy relative to reinvasion.

2011 ◽  
Vol 38 (4) ◽  
pp. 350 ◽  
Author(s):  
K. E. Moseby ◽  
J. L. Read ◽  
B. Galbraith ◽  
N. Munro ◽  
J. Newport ◽  
...  

Context Poison baits are often used to control both foxes and feral cats but success varies considerably. Aims This study investigated the influence of bait type, placement and lures on bait uptake by the feral cat, red fox and non-target species to improve baiting success and reduce non-target uptake. Methods Six short field trials were implemented during autumn and winter over a five-year period in northern South Australia. Key results Results suggest that poison baiting with Eradicat or dried kangaroo meat baits was inefficient for feral cats due to both low rates of bait detection and poor ingestion rates for baits that were encountered. Cats consumed more baits on dunes than swales and uptake was higher under bushes than in open areas. The use of auditory or olfactory lures adjacent to baits did not increase ingestion rates. Foxes consumed more baits encountered than cats and exhibited no preference between Eradicat and kangaroo meat baits. Bait uptake by native non-target species averaged between 14 and 57% of baits during the six trials, accounting for up to 90% of total bait uptake. Corvid species were primarily responsible for non-target uptake. Threatened mammal species investigated and nibbled baits but rarely consumed them; however, corvids and some common rodent species ingested enough poison to potentially receive a lethal dose. Conclusions It is likely that several factors contributed to poor bait uptake by cats including the presence of alternative prey, a preference for live prey, an aversion to scavenging or eating unfamiliar foods and a stronger reliance on visual rather than olfactory cues for locating food. Implications Further trials for control of feral cats should concentrate on increasing ingestion rates without the requirement for hunger through either involuntary ingestion via grooming or development of a highly palatable bait.


2018 ◽  
Vol 45 (3) ◽  
pp. 274 ◽  
Author(s):  
Peter D. Alexander ◽  
Eric M. Gese

Context Several studies have estimated cougar (Puma concolor) abundance using remote camera trapping in conjunction with capture–mark–recapture (CMR) type analyses. However, this methodology (photo-CMR) requires that photo-captured individuals are individually recognisable (photo identification). Photo identification is generally achieved using naturally occurring marks (e.g. stripes or spots) that are unique to each individual. Cougars, however, are uniformly pelaged, and photo identification must be based on subtler attributes such as scars, ear nicks or body morphology. There is some debate as to whether these types of features are sufficient for photo-CMR, but there is little research directly evaluating its feasibility with cougars. Aim We aimed to examine researchers’ ability to reliably identify individual cougars in photographs taken from a camera-trapping survey, in order to evaluate the appropriateness of photo-CMR for estimating cougar abundance or CMR-derived parameters. Methods We collected cougar photo detections using a grid of 55 remote camera traps in north-west Wyoming, USA. The photo detections were distributed to professional biologists working in cougar research, who independently attempted to identify individuals in a pairwise matching process. We assessed the level to which their results agreed, using simple percentage agreement and Fleiss’s kappa. We also generated and compared spatially explicit capture–recapture (SECR) density estimates using their resultant detection histories. Key results There were no cases where participants were in full agreement on a cougar’s ID. Agreement in photo identification among participants was low (n = 7; simple agreement = 46.7%; Fleiss’s kappa = 0.183). The resultant SECR density estimates ranged from 0.7 to 13.5 cougars per 100 km2 (n = 4; s.d. = 6.11). Conclusion We were unable to produce reliable estimates of cougar density using photo-CMR, due to our inability to accurately photo-tag detected individuals. Abundance estimators that do not require complete photo-tagging (i.e. mark–resight) were also infeasible, given the lack of agreement on any single cougar’s ID. Implications This research suggested that there are substantial problems with the application of photo-CMR to estimate the size of cougar populations. Although improvements in camera technology or field methods may resolve these issues, researchers attempting to use this method on cougars should be cautious.


2020 ◽  
Vol 47 (8) ◽  
pp. 669
Author(s):  
Rosemary Hohnen ◽  
Karleah Berris ◽  
Pat Hodgens ◽  
Josh Mulvaney ◽  
Brenton Florence ◽  
...  

Abstract Context Feral cats (Felis catus) are a significant threat to wildlife in Australia and globally. In Australia, densities of feral cats vary across the continent and also between the mainland and offshore islands. Densities on small islands may be at least an order of magnitude higher than those in adjacent mainland areas. To provide cat-free havens for biodiversity, cat-control and eradication programs are increasingly occurring on Australian offshore islands. However, planning such eradications is difficult, particularly on large islands where cat densities could vary considerably. Aims In the present study, we examined how feral cat densities vary among three habitats on Kangaroo Island, a large Australian offshore island for which feral cat eradication is planned. Methods Densities were compared among the following three broad habitat types: forest, forest–farmland boundaries and farmland. To detect cats, three remote-camera arrays were deployed in each habitat type, and density around each array was calculated using a spatially explicit capture–recapture framework. Key results The average feral cat density on Kangaroo Island (0.37 cats km−2) was slightly higher than that on the Australian mainland. Densities varied from 0.06 to 3.27 cats km−2 and were inconsistent within broad habitat types. Densities were highest on farms that had a high availability of macropod and sheep carcasses. The relationship between cat density and the proportion of cleared land in the surrounding area was weak. The total feral cat population of Kangaroo Island was estimated at 1629±661 (mean±s.e.) individuals. Conclusions Cat densities on Kangaroo Island are highly variable and may be locally affected by factors such as prey and carrion availability. Implications For cat eradication to be successful, resources must be sufficient to control at least the average cat density (0.37 cats km−2), with additional effort around areas of high carcass availability (where cats are likely to be at a higher density) potentially also being required.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3562
Author(s):  
Cheryl A. Lohr ◽  
Kristen Nilsson ◽  
Ashleigh Johnson ◽  
Neil Hamilton ◽  
Mike Onus ◽  
...  

Feral cats are difficult to manage and harder to monitor. We analysed the cost and the efficacy of monitoring the pre- and post-bait abundance of feral cats via camera-traps or track counts using four years of data from the Matuwa Indigenous Protected Area. Additionally, we report on the recovery of the feral cat population and the efficacy of subsequent Eradicat® aerial baiting programs following 12 months of intensive feral cat control in 2019. Significantly fewer cats were captured in 2020 (n = 8) compared to 2019 (n = 126). Pre-baiting surveys for 2020 and 2021 suggested that the population of feral cats on Matuwa was very low, at 5.5 and 4.4 cats/100 km, respectively, which is well below our target threshold of 10 cats/100 km. Post-baiting surveys then recorded 3.6 and 3.0 cats/100 km, respectively, which still equates to a 35% and 32% reduction in cat activity. Track counts recorded significantly more feral cats than camera traps and were cheaper to implement. We recommend that at least two methods of monitoring cats be implemented to prevent erroneous conclusions.


Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 907 ◽  
Author(s):  
Eamonn Wooster ◽  
Arian D. Wallach ◽  
Daniel Ramp

The red fox (Vulpes vulpes) is a widespread and ecologically significant terrestrial mesopredator, that has expanded its range with human globalisation. Despite this, we know relatively little about their behaviour under the wide range of ecological conditions they experience, particularly how they navigate the risk of encounters with apex predators. We conducted the first ethological study of foxes outside their historic native range, in Australia, where both the foxes and their main predator were protected from human hunting. Using remote camera traps, we recorded foxes visiting key resource points regularly utilised by territorial dingoes (Canis dingo), their local apex predator, in the Painted Desert, South Australia. We constructed an ethogram sensitive to a range of behaviours and attitudes. Since foxes are suppressed by dingoes, we expected that the foxes would primarily be in a cautious state. In contrast, we found that foxes were in a confident state most of the time. Where human hunting is absent, social stability of predators may increase predictability and therefore decrease fear.


Author(s):  
Cheryl Lohr ◽  
Kristen Nilsson ◽  
Ashleigh Johnson ◽  
Neil Hamilton ◽  
Mike Onus ◽  
...  

Feral cats are both difficult to manage and harder to monitor. We analysed the cost-efficacy of monitoring the pre- and post-bait abundance of feral cats via camera-traps or track counts using four years of data from the Matuwa Indigenous protected Area. Additionally, we report on the recovery of the feral cat population and the efficacy of subsequent Eradicat® aerial baiting programs following 12 months of intensive feral cat control in 2019 that consisted of aerial baiting and leg-hold trapping. Significantly fewer cats were captured in 2020 (n = 8) compared to 2019 (n = 126). Pre-baiting surveys for 2020 and 2021 suggested that the population of feral cats on Matuwa was very low, at 5.5 and 4.4 cats/100 km respectively, which is well below our target threshold of 10 cats/100 km. Post-baiting surveys then recorded 3.6 and 3.0 cats/100 km respectively, which still equates to a 35% and 32% reduction in cat activity. Track counts recorded significantly more feral cats than camera traps and were cheaper to implement. We recommend that at least two methods of monitoring cats be implemented to prevent erroneous conclusions.


Animals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 236 ◽  
Author(s):  
Rochelle Morton ◽  
Michelle Hebart ◽  
Alexandra Whittaker

Animal welfare legislation in South Australia underwent amendments in 2008, where all the maximum penalties for animal welfare offences were doubled. This commitment to increased penalties arguably provides evidence of the legislature’s intent with respect to penalties. Studies have speculated that the legislative intent behind the increased penalties is not being reflected in the courts. This interdisciplinary research sought to gain evidence to confirm or disprove these speculations, by quantifying the average custodial sentence and monetary fine handed down in court before and after the 2008 amendments. Furthermore, trends relating to the species of animal affected and the demographics of the offender were identified. A total of 314 RSPCA (SA) closed case files from 2006 to 2018 were converted into an electronic form. Since the amendments, the average penalties have doubled in magnitude; fines have increased from $700 to $1535, while prison sentences have increased from 37 days to 77 days. Cases of companion animal abuse were most common (75% of all cases) and the location of the offence was found to influence offending. These findings suggest that the 2008 amendments have caused the average penalties to increase. However, it is debatable whether these increases are enough to effectively punish animal abusers.


Author(s):  
Jason Fisher ◽  
Joanna Burgar ◽  
Melanie Dickie ◽  
Cole Burton ◽  
Rob Serrouya

Density estimation is a key goal in ecology but accurate estimates remain elusive, especially for unmarked animals. Data from camera-trap networks combined with new density estimation models can bridge this gap but recent research has shown marked variability in accuracy, precision, and concordance among estimators. We extend this work by comparing estimates from two different classes of models: unmarked spatial capture-recapture (spatial count, SC) models, and Time In Front of Camera (TIFC) models, a class of random encounter model. We estimated density for four large mammal species with different movement rates, behaviours, and sociality, as these traits directly relate to model assumptions. TIFC density estimates were typically higher than SC model estimates for all species. Black bear TIFC estimates were ~ 10-fold greater than SC estimates. Caribou TIFC estimates were 2-10 fold greater than SC estimates. White-tailed deer TIFC estimates were up to 100-fold greater than SC estimates. Differences of 2-5 fold were common for other species in other years. SC estimates were annually stable except for one social species; TIFC estimates were highly annually variable in some cases and consistent in others. Tests against densities obtained from DNA surveys and aerial surveys also showed variable concordance and divergence. For gregarious animals TIFC may outperform SC due to the latter model’s assumption of independent activity centres. For curious animals likely to investigate camera traps, SC may outperform TIFC, which assumes animal behavior is unaffected by cameras. Unmarked models offer great possibilities, but a pragmatic approach employs multiple estimators where possible, considers the ecological plausibility of assumptions, and uses an informed multi-inference approach to seek estimates from models with assumptions best fitting a species’ biology.


2017 ◽  
Vol 44 (3) ◽  
pp. 269 ◽  
Author(s):  
Rebecca West ◽  
Matthew J. Ward ◽  
Wendy K. Foster ◽  
David A. Taggart

Context Supplementary resource provision is increasingly used by conservation managers to manipulate habitat conditions that limit population growth of threatened species. These methods are popular in reintroduction programs because they can assist released individuals to adapt to novel environments. In situ management and reintroductions are being used to recover warru (black-footed rock-wallaby, Petrogale lateralis MacDonnell Ranges race) on the arid Anangu Pitjantjatjara Yankunytjatjara (APY) Lands of South Australia. Direct predation by introduced predators is thought to be the main cause of population decline, but indirect predation effects reducing access to water resources has also been proposed as a limiting factor. Aims To determine whether warru would use supplementary water and so provide a tool to alleviate resource pressure for in situ (wild) and reintroduced warru populations. Methods We provided supplementary water to a wild and reintroduced warru population across 12 months. Drinking rates were calculated by monitoring water points with camera traps and modelled against plant moisture content and total rainfall. We also examined whether number of visits to water points by warru predators and competitors was significantly different to control points (no water present). Key results Wild and reintroduced warru used water points within 0–10 days of installation. No significant increase in visits by predators or competitors was observed at water points. Drinking rates were significantly higher during dry winter months (March–October) for both wild and re-introduced populations. Conclusions Supplementary water is readily utilised by warru. Water could be provided in this manner to warru populations where predators are present, particularly during drier months (generally March–October on the APY Lands), periods of drought or after fire, when food resources will have a lower water content and/or be less abundant. This may increase breeding rates and recruitment of young, and improve the probability of persistence for populations of this threatened species, and should be further investigated. Implications Supplementary water provision may be a useful tool to increase population growth rates for threatened mammalian herbivores in arid habitats. Experimental trials of the uptake of supplementary water and effects on population dynamics will provide important data for implementing adaptive management frameworks for conservation.


2003 ◽  
Vol 61 (3A) ◽  
pp. 533-541 ◽  
Author(s):  
Lázaro Amaral ◽  
Murilo Maschietto ◽  
Roberta Maschietto ◽  
Ricardo Cury ◽  
Nelson Fortes Ferreira ◽  
...  

PURPOSE: The typical manifestations of neurocysticercosis are described widely in the literature. The purpose of this study is to demonstrate the uncommon presentations of different forms of neurocysticercosis in MR imaging. METHOD: A retrospective analysis of 172 cases of neurocysticercosis in MR studies was carried out over a period of 13 years. One hundred and four males and 68 females with a mean age of 32 ± 3.7 years were studied. The studies were performed on 1.5 T GE MR units and T1 was used before and after gadolinium injection, T2 and gradient-echo (T2*) sequences. RESULTS: The authors divided the unusual manifestations of neurocysticercosis into: intraventricular, subarachnoid, spinal, orbital, intraparenchymatous, and reactivation of previously calcified lesions. The results obtained were: intraparenchymatous 95 cases (55.23%); intraventricular 27 cases (15.69%); subarachnoid 20 cases (11.63%); spinal 6 cases (3.49%); orbital 1 case (0.58%); reactivated lesion 1 case (0.58%); association of intraventricular and intraparenchymatous 12 cases (6.98%); association of subarachnoid and intraparenchymatous 6 cases (3.49%); association of subarachnoid and intraventricular, 4 cases (2.32%). CONCLUSION: MR imaging is a sensitive and specific method in the analysis of different forms of unusual manifestations of neurocysticercosis, which should appear in the differential diagnosis of parenchymal, ventricular, spinal, cisternal, and orbital lesions.


Sign in / Sign up

Export Citation Format

Share Document