Validation of near-infrared reflectance spectroscopy to estimate the potential intake of Eucalyptus foliage by folivorous marsupials

2003 ◽  
Vol 51 (1) ◽  
pp. 95 ◽  
Author(s):  
I. R. Wallis ◽  
W. J. Foley

We validated an existing model of food intake by captive common ringtail possums (Pseudocheirus peregrinus), a folivorous marsupial, by feeding foliage from 18 individual Eucalyptus polyanthemos trees and measuring dry matter intake. Near-infrared reflectance (NIR) spectra of a sample of each foliage were recorded and compared against a previously derived model relating food intake in common ringtails and NIR spectra. We found excellent agreement between the predicted and measured food intake, with the standard error of prediction being 3.6 g kg(body mass)–0.75 day–1. NIR spectroscopy is a suitable tool for modelling complex attributes such as potential feeding rates of mammals. This makes it theoretically possible to remotely sense critical nutritional determinants of animal habitat on a landscape scale.

2021 ◽  
pp. 096703352110075
Author(s):  
Adou Emmanuel Ehounou ◽  
Denis Cornet ◽  
Lucienne Desfontaines ◽  
Carine Marie-Magdeleine ◽  
Erick Maledon ◽  
...  

Despite the importance of yam ( Dioscorea spp.) tuber quality traits, and more precisely texture attributes, high-throughput screening methods for varietal selection are still lacking. This study sets out to define the profile of good quality pounded yam and provide screening tools based on predictive models using near infrared reflectance spectroscopy. Seventy-four out of 216 studied samples proved to be moldable, i.e. suitable for pounded yam. While samples with low dry matter (<25%), high sugar (>4%) and high protein (>6%) contents, low hardness (<5 N), high springiness (>0.5) and high cohesiveness (>0.5) grouped mostly non-moldable genotypes, the opposite was not true. This outline definition of a desirable chemotype may allow breeders to choose screening thresholds to support their choice. Moreover, traditional near infrared reflectance spectroscopy quantitative prediction models provided good prediction for chemical aspects (R2 > 0.85 for dry matter, starch, protein and sugar content), but not for texture attributes (R2 < 0.58). Conversely, convolutional neural network classification models enabled good qualitative prediction for all texture parameters but hardness (i.e. an accuracy of 80, 95, 100 and 55%, respectively, for moldability, cohesiveness, springiness and hardness). This study demonstrated the usefulness of near infrared reflectance spectroscopy as a high-throughput way of phenotyping pounded yam quality. Altogether, these results allow for an efficient screening toolbox for quality traits in yams.


1987 ◽  
Vol 67 (2) ◽  
pp. 557-562 ◽  
Author(s):  
E. V. VALDES ◽  
R. B. HUNTER ◽  
G. E. JONES

A comparison of two near infrared (NIRA) calibrations (C1 and C2) for the prediction of in vitro dry matter digestibility (IVDM) in whole-plant corn (WPC) was conducted. C1 consisted of 40 WPC samples collected from four locations across Ontario (Brucefield, London, Guelph and Elora). C2 consisted of 90 samples and included the above locations plus Pakenham and Winchester. Nine wavelengths were used in both equations but only three were common in C1 and C2 equations. These wavelengths were 2139 nm, 2100 nm, and 1445 nm, respectively. The predictions of IVDM utilizing both C1 and C2 were good. Coefficients of determination (r2) and standard error of the estimate (SEE) for calibration and prediction sets were 0.91, 1.7; 0.85, 1.7 for C1 and 0.88, 1.6; 0.77, 1.6 for C2 respectively. Regression analysis within location, however, showed low r2 values for the prediction of IVDM for Pakenham and Winchester in both calibrations. The more mature stage of harvest at these locations might be the cause of the poorer predictions. Key words: In vitro digestibility, whole-plant corn, near infrared reflectance


1990 ◽  
Vol 38 (4) ◽  
pp. 653-659
Author(s):  
J.G.P.W. Clevers ◽  
L. Sibma

The near-infrared reflectance of maize crops grown in East Flevoland, Netherlands, estimated using aerial photography was used to estimate LAI. By analysing a calibration set, a regression function of DM yield on near-infrared reflectance factor was estimated. This regression function was used to estimate DM yield of maize grown under similar conditions and photographed on the same day. (Abstract retrieved from CAB Abstracts by CABI’s permission)


1991 ◽  
Vol 31 (2) ◽  
pp. 205 ◽  
Author(s):  
KF Smith ◽  
PC Flinn

Near infrared reflectance (NIR) spectroscopy is a rapid and cost-effective method for the measurement of organic constituents of agricultural products. NIR is widely used to measure feed quality around the world and is gaining acceptance in Australia. This study describes the development of an NIR calibration to measure crude protein (CP), predicted in vivo dry matter digestibility (IVDMD) and neutral detergent fibre (NDF) in temperate pasture species grown in south-western Victoria. A subset of 116 samples was selected on the basis of spectral characteristics from 461 pasture samples grown in 1987-89. Several grass and legume species were present in the population. Stepwise multiple linear regression analysis was used on the 116 samples to develop calibration equations with standard errors of 0.8,2.3 and 2.2% for CP, NDF and IVDMD, respectively. When these equations were tested on 2 independent pasture populations, a significant bias existed between NIR and reference values for 2 constituents in each population, indicating that the calibration samples did not adequately represent the new populations for these constituents. The results also showed that the H statistic alone was inadequate as an indicator of equation performance. It was confirmed that it was possible to develop a broad-based calibration to measure accurately the nutritive value of closed populations of temperate pasture species. For the resulting equations to be used for analysis of other populations, however, they must be monitored by comparing reference and NIR analyses on a small number of samples to check for the presence of bias or a significant increase in unexplained error.


2009 ◽  
Vol 2009 ◽  
pp. 135-135
Author(s):  
N Prieto ◽  
D W Ross ◽  
E A Navajas ◽  
G Nute ◽  
R I Richardson ◽  
...  

Visible and near infrared reflectance spectroscopy (Vis-NIR) has been widely used by the industry research-base for large-scale meat quality evaluation to predict the chemical composition of meat quickly and accurately. Meat tenderness is measured by means of slow and destructive methods (e.g. Warner-Bratzler shear force). Similarly, sensory analysis, using trained panellists, requires large meat samples and is a complex, expensive and time-consuming technique. Nevertheless, these characteristics are important criteria that affect consumers’ evaluation of beef quality. Vis-NIR technique provides information about the molecular bonds (chemical constituents) and tissue ultra-structure in a scanned sample and thus can indirectly predict physical or sensory parameters of meat samples. Applications of Vis-NIR spectroscopy in an abattoir for prediction of physical and sensory characteristics have been less developed than in other fields. Therefore, the aim of this study was to test the on-line Vis-NIR spectroscopy for the prediction of beef quality characteristics such as colour, instrumental texture, water holding capacity (WHC) and sensory traits, by direct application of a fibre-optic probe to the M. longissimus thoracis with no prior sample treatment.


1995 ◽  
Vol 78 (3) ◽  
pp. 802-806 ◽  
Author(s):  
José Louis Rodriguez-Otero ◽  
Maria Hermida ◽  
Alberto Cepeda

Abstract Near-infrared reflectance (NIR) spectroscopy was used to analyze fat, protein, and total solids in cheese without any sample treatment. A set of 92 samples of cow’s milk cheese was used for instrument calibration by principal components analysis and modified partial least-square regression. The following statistical values were obtained: standard error of calibration (SEC) = 0.388 and squared correlation coefficient (R2) = 0.99 for fat, SEC = 0.397 and R2 = 0.98 for protein, and SEC = 0.412 and R2 = 0.99 for total solids. To validate the calibration, an independent set of 25 cheese samples of the same type was used. Standard errors of validation were 0.47,0.50, and 0.61 for fat, protein, and total solids, respectively, and hf for the regression of measurements by reference methods versus measurements by NIR spectroscopy was 0.98 for the 3 components.


Sign in / Sign up

Export Citation Format

Share Document