High-temperature survival is limited by food availability in first-instar locust nymphs

2010 ◽  
Vol 58 (5) ◽  
pp. 323 ◽  
Author(s):  
James D. Woodman

The Australian plague locust, Chortoicetes terminifera (Walker), is often exposed to high temperature and low humidity in semiarid and arid environments. Early-instar survival under these conditions is an important prerequisite for the formation of high-density aggregations in summer and autumn generations. The present study investigates how first-instar C. terminifera respond to high temperature and low humidity using measures of total body water content, physiological and behavioural transitions during temperature increase, critical upper limit, and mortality relative to food availability. The critical upper limit for fed nymphs was very high at 53.3 ± 1.0°C, with death preceded by a clear progression of changes in behaviour, gas exchange, water loss and excretion. At more ecologically relevant high temperatures, food availability allowed nymphs to behaviourally respond to increased water loss, and the resulting physiological maintenance of water reserves provided cross-tolerance to heat relative to exposure duration and maximum temperature as well as the rate of warming. While very high mortality was recorded at ≥45°C in 6-h direct-exposure experiments, a highly exposed and very poorly vegetated summer environment would be required for local population failures from current high temperatures and low humidity alone.

2014 ◽  
Vol 1693 ◽  
Author(s):  
Dean P. Hamilton ◽  
Michael R. Jennings ◽  
Craig A. Fisher ◽  
Yogesh K. Sharma ◽  
Stephen J. York ◽  
...  

ABSTRACTSilicon carbide power devices are purported to be capable of operating at very high temperatures. Current commercially available SiC MOSFETs from a number of manufacturers have been evaluated to understand and quantify the aging processes and temperature dependencies that occur when operated up to 350°C. High temperature constant positive bias stress tests demonstrated a two times increase in threshold voltage from the original value for some device types, which was maintained indefinitely but could be corrected with a long negative gate bias. The threshold voltages were found to decrease close to zero and the on-state resistances increased quite linearly to approximately five or six times their room temperature values. Long term thermal aging of the dies appears to demonstrate possible degradation of the ohmic contacts. This appears as a rectifying response in the I-V curves at low drain-source bias. The high temperature capability of the latest generations of these devices has been proven independently; provided that threshold voltage management is implemented, the devices are capable of being operated and are free from the effects of thermal aging for at least 70 hours cumulative at 300°C.


1999 ◽  
Vol 14 (3) ◽  
pp. 715-728 ◽  
Author(s):  
P. Zhao ◽  
D. G. Morris ◽  
M. A. Morris Munoz

High-temperature forging experiments have been carried out by axial compression testing on a Fe–41Al–2Cr alloy in order to determine the deformation systems operating under such high-speed, high-temperature conditions, and to examine the textures produced by such deformation and during subsequent annealing to recrystallize. Deformation is deduced to take place by the operation of 〈111〉 {110} and 〈111〉{112} slip systems at low temperatures and by 〈100〉{001} and 〈100〉{011} slip systems at high temperatures, with the formation of the expected strong 〈111〉 textures. The examination of the weak 〈100〉 texture component is critical to distinguishing the operating slip system. Both texture and dislocation analyses are consistent with the operation of these deformation systems. Recrystallization takes place extremely quickly at high temperatures (above 800 °C), that is within seconds after deformation and also dynamically during deformation itself. Recrystallization changes the texture such that 〈100〉 textures superimpose on the deformation texture. The flow stress peak observed during forging is found at a very high temperature. Possible origins of the peak are examined in terms of the operating slip systems.


1998 ◽  
Vol 25 (5) ◽  
pp. 547 ◽  
Author(s):  
Nick Dexter

The two parameters believed to influence habitat utilisation by feral pigs and wild boar (Sus scrofa) are protection from high temperatures and distribution of food. However, whether there is an interaction between these parameters is unknown. To examine the influence of high temperature on habitat utilisation, the use of four rangeland habitats (shrubland, woodland, riverine woodland, and ephemeral swamps) by feral pigs in north-west New South Wales, Australia, was measured by radio-telemetry during and after a drought. In each habitat, protection from high temperature was indexed once by vegetation cover, at three strata, while over the course of the study, food distribution was indexed by estimating pasture biomass in each habitat. Riverine woodland provided the most shelter from high temperature, followed by woodland, shrubland and ephemeral swamps. On average, ephemeral swamps had the highest pasture biomass, followed by riverine woodland, shrubland and woodland. The amount of pasture in each habitat increased after the drought but changed at different rates. During autumn, spring and summer feral pigs preferred riverine woodland but in winter shrubland was preferred. Multivariate regression indicated that habitat utilisation was significantly influenced by pasture biomass in shrubland and mean maximum temperature in the study area. The results suggest that feral pigs are restricted by high temperatures to more shady habitats during hot weather but when the constraint of high temperature is relaxed they distribute themselves more according to the availability of food.


1997 ◽  
Vol 172 (1-2) ◽  
pp. 93-102 ◽  
Author(s):  
Y. Tachibana ◽  
S. Shiozawa ◽  
J. Fukakura ◽  
F. Matsumoto ◽  
T. Araki

1982 ◽  
Vol 75 (1) ◽  
pp. 53-55
Author(s):  
George Knill ◽  
George Fawceti

Everyone knows that wood bums at a very high temperature. This burning is a chemical process that combines oxygen and carbon. The process occurs at very low temperatures as well as at very high ones. At high temperatures the process is spectacular-fire. At low temperatures (room temperature) you won’t even notice it, although it is still going on. Wood is always burning.


2021 ◽  
Vol 14 (1) ◽  
pp. 332
Author(s):  
Mushtaq Ahmad Khan Barakzai ◽  
S.M. Aqil Burney

The objective of this paper is to model and study the impact of high temperature on mortality in Pakistan. For this purpose, we have used mortality and climate data consisting of maximum temperature, variation in monthly temperature, average rainfall, humidity, dewpoint, as well as average air pressure in the country over the period from 2000 to 2019. We have used the Generalized Linear Model with Quasi-Poisson link function to model the number of deaths in the country and to assess the impact of maximum temperature on mortality. We have found that the maximum temperature in the country has a significant impact on mortality. The number of deaths in Pakistan increases as the maximum temperature increases. We found that, as the maximum temperature increase beyond 30 °C, mortality increases significantly. Our results indicate that mortality increases by 27% when the maximum temperature in the country increases from medium category to a very high level. Similarly, the number of deaths in the country increases by 11% when the temperature increases from medium temperature to high level. Furthermore, our study found that when the maximum temperature in the country decreases from a medium level to a low level, the number of deaths in the country decreases by 23%. This study does not consider the impact of other factors on mortality, such as age, medical conditions, gender, geographical location, as well as variability of temperature across the country.


2021 ◽  
Author(s):  
Zhiqiang Pang ◽  
Zhaoxu Wang

Abstract In this study, temporIn this study, temporal trend analysis was conducted on the annual and quarterly meteorological variables of Lanzhou from 1951 to 2016, and a weighted Markov model for extremely high-temperature prediction was constructed. Several non-parametric methods were used to analyze the time trend. Considering that sequence autocorrelation may affect the accuracy of the trend test, we performed an autocorrelation test and carried out trend analysis for sequences with autocorrelation after removing correlation. The results show that the maximum temperature, minimum temperature, and average temperature in Lanzhou have a significant rising trend and show different performances in each season. In detail, the maximum temperature in summer does not have a significant change trend, while the minimum temperature in winter is the most significant rising trend, which leads to more and more ”warm winter” phenomenon. Finally, we construct a weighted Markov prediction model for extremely high temperatures and obtain the conclusion that the prediction results by the model are consistent with the real situation. and show different performances in each season. In detail, the maximum temperature in summer does not have a significant change trend, while the minimum temperature in winter is the most significant rising trend, which leads to more and more ”warm winter” phenomenon. Finally, we construct a weighted Markov prediction model for extremely high temperatures and obtain the conclusion that the prediction results by the model are consistent with the real situation.


2019 ◽  
Vol 79 (8) ◽  
pp. 1503-1510
Author(s):  
M. Mouzaoui ◽  
J. C. Baudez ◽  
M. Sauceau ◽  
P. Arlabosse

Abstract Controlling the residence time in paddle dryers and the drying efficiency imply the knowledge of rheological behaviour of highly concentrated and pasty sludge and its temperature dependency. However, because of perturbing effects such as evaporation, measurements are not fully representative of intrinsic sludge properties. Classical techniques usually considered in the literature for evaporation control are not efficient at high temperatures. This work gives a method to control the evaporation at high temperature that can be used with any commercial rheometer. The configuration concept is to prevent water loss by limiting the contact between the sheared sludge and the environment. This configuration allows preventing evaporation up to 80 °C at least during 2 h. Its efficiency is confirmed at different total solid (TS) contents ranging from 20 to 47 wt.%.


1995 ◽  
Vol 404 ◽  
Author(s):  
T. Kamino ◽  
H. Saka

AbstractA specimen-heating holder which allows an observation of reactions of more than one materials, in a controlled manner, at such a high temperature as 1723K has been developed. Facet-unfacet transformation and reconstruction of Au-deposited Si surfaces have been observed at very high temperatures at near-atomic resolution.


2004 ◽  
Vol 842 ◽  
Author(s):  
D. G. Morris ◽  
M. A. Muñoz-Morris ◽  
C. Baudin

ABSTRACTMost of the studies aimed at the development of creep-resisting Fe-Al intermetallics have been oriented at application temperatures of the order of 500–650°C, where these materials may compete with conventional stainless steels. The Fe-Al intermetallics are, however, particularly excellent in their oxidation and corrosion resistances at temperatures of the order of 1000°C, where Chromium-Nickel steels are no longer able to withstand the aggressive environments. This presentation is part of a study aimed at the development of good creep resistance at such high temperatures.Studies of a variety of cast Fe3Al-base alloys, strengthened by solution or precipitate/dispersoid-forming alloying additions, are reported. The alloys show good strength from room temperature to about 500°C, but thereafter strength falls rapidly as thermally-activated deformation processes become operative. Solution additions are capable of producing good low temperature strength, but do not contribute significantly to creep strength at very high temperatures (above 700°C). Precipitation hardening has been examined in Nb-containing alloys, where Fe2Nb Laves precipitates form at intermediate temperatures. These materials show good strength up to about 700°C, but at higher temperatures the fine precipitates coarsen excessively. Strengthening in the intermediate temperature range varies depending on whether the solute is precipitated prior to high temperature testing or concurrent with this.


Sign in / Sign up

Export Citation Format

Share Document