A direct benefit of native saltbush revegetation for an endemic lizard (Tiliqua rugosa) in southern Australia

2012 ◽  
Vol 60 (3) ◽  
pp. 192 ◽  
Author(s):  
Melanie L. Lancaster ◽  
Michael G. Gardner ◽  
Alison J. Fitch ◽  
Talat H. Ansari ◽  
Anita K. Smyth

Land alteration for intensive agriculture has been a major cause of species decline and extinction globally. In marginal grazing regions of southern Australia, native perennial shrubs are increasingly being planted to supplement pasture feeding of stock. Such revegetation has the benefits of reducing erosion and salinity, and importantly, the potential provision of habitat for native fauna. We explored the use of revegetated native saltbush by the sleepy lizard (Tiliqua rugosa) an endemic Australian species common in the region. We repeatedly sampled revegetated saltbush throughout 2010 and 2011 for adults (n = 55) and juveniles (n = 26). Using genotypes from eight microsatellite loci, parents were assigned to half of all juveniles with high statistical confidence. Parents were sampled in the same patch of revegetated saltbush as their offspring, thus supporting the observation that juvenile sleepy lizards remain within the home range of their parents before dispersal. Most importantly, our findings indicate that revegetated saltbush provides important habitat for T. rugosa at significant life stages – before and during breeding for adults, and before dispersal for juveniles. We conclude that revegetation using simple, monoculture plantations provides beneficial habitat for T. rugosa and may also be beneficial habitat for other native species in human-altered agricultural landscapes.

1999 ◽  
Vol 47 (5) ◽  
pp. 697 ◽  
Author(s):  
David T. Bell

The revegetation of damaged agricultural landscapes requires a detailed knowledge of appropriate species and their adaptations to cope with the stresses of environments altered by humans. A range of Australian species has a role in the restoration of water and salt balances of catchments and can provide income diversity to agricultural properties damaged by increased frequencies of flooding, rising groundwaters and increased salinities. This review concentrates on the ecologically significant attributes of Australian woody species in waterlogged and saline habitats, and responses of species particularly suited to the restoration of water balance in cleared catchments. Australian catchments yield little water under natural vegetation, the trees and shrubs being especially resourceful in utilising much of the annual rainfall input. Replacing native, deep-rooted perennial species with annual crops always results in a net gain in catchment water. To redress these problems, cleared landscapes must be partially restored to tree and shrub cover to utilise the excess water remaining when crops are harvested or lie dormant over summer. Upland regions of restored landscapes should be planted to tree crops, particularly those that are luxuriant water users, of commercial value to farmers. Tree plantations for paper pulp, soft-wood timber and eucalypt oils are possibilities. Lowland sites in damaged catchments must be revegetated with trees which have waterlogging adaptations, such as aerenchyma, and tolerance to the products of anaerobic respiration. Areas of waterlogging that are additionally affected by excess salts must have exceptional trees. Australia has a number of native species which are well suited to survive these conditions, produce biomass and utilise excess water, while restricting or coping with the uptake of over-abundant salts. Most tolerant Australian species have a range of anatomical, morphological and physiological attributes to contribute to these adaptive qualities. This review highlights some of these features and describes various combinations that are successful. Australia now has a range of genotypes to bring to bear in the battle to rehabilitate landscapes damaged by disruption of the soil–salt–water balance. Only by redressing these problems can we ensure that future generations will have land capable of retaining economic value and producing potable water.


2003 ◽  
Vol 51 (5) ◽  
pp. 543 ◽  
Author(s):  
María A. Pérez-Fernández ◽  
Byron B. Lamont

Six Spanish legumes, Cytisus balansae, C. multiflorus, C. scoparius, C. striatus, Genista hystrix and Retama sphaerocarpa, were able to form effective nodules when grown in six south-western Australian soils. Soils and nodules were collected from beneath natural stands of six native Australian legumes, Jacksonia floribunda, Gompholobium tomentosum, Bossiaea aquifolium, Daviesia horrida, Gastrolobium spinosum and Templetonia retusa. Four combinations of soils and bacterial treatments were used as the soil treatments: sterile soil (S), sterile inoculated soils (SI), non-treated soil (N) and non-treated inoculated soils (NI). Seedlings of the Australian species were inoculated with rhizobia cultured from nodules of the same species, while seedlings of the Spanish species were inoculated with cultures from each of the Australian species. All Australian rhizobia infected all the Spanish species, suggesting a high degree of 'promiscuity' among the bacteria and plant species. The results from comparing six Spanish and six Australian species according to their biomass and total nitrogen in the presence (NI) or absence (S) of rhizobia showed that all species benefitted from nodulation (1.02–12.94 times), with R.�sphaerocarpa and C. striatus benefiting more than the native species. Inoculation (SI and NI) was just as effective as, or more effective than the non-treated soil (i.e. non-sterile) in inducing nodules. Nodules formed on the Spanish legumes were just as efficient at fixing N2 as were those formed on the Australian legumes. Inoculation was less effective than non-treated soil at increasing biomass but just as effective as the soil at increasing nitrogen content. Promiscuity in the legume–bacteria symbiosis should increase the ability of legumes to spread into new habitats throughout the world.


1954 ◽  
Vol 5 (1) ◽  
pp. 132 ◽  
Author(s):  
JM Thomson

Both conchological and malacological characters have been applied to the differentiation of the genera and species. Characters not previously used include the arrangement of tentacles on the mantle folds and the pigmentation on gills, palps, and mantle folds. Three genera are recognized, Ostrea Linnaeus, Crassostrea Sacco, and Pycnodonte Fischer de Waldheim. Ten native species of Australian oyster and one imported species are described in detail. Two keys to the species are provided, one based on shell characters and one based on the details of the soft anatomy.


1974 ◽  
Vol 8 (1) ◽  
pp. 23-28 ◽  
Author(s):  
D L Hawksworth

The activities of man have led to the extinction of relatively few species of plants and animals native to the British Isles over the last two centuries. Many have declined considerably as a result of increasingly intensive agriculture, industrialization and urbanization but others have expanded into man-made habitats. Introduced species continue to arrive in increasing numbers. For the rarer native species there is a need for careful recording and research into status and habitats.


2012 ◽  
Vol 34 (2) ◽  
pp. 219 ◽  
Author(s):  
Megan K. Good ◽  
Jodi N. Price ◽  
Peter J. Clarke ◽  
Nick Reid

Clearing of native vegetation and changes to disturbance regimes have resulted in dense regeneration of native trees and shrubs in parts of Australia. The conversion of open vegetation to dense woodlands may result in changes to the composition of plant communities and ecosystem function if structure, composition and function are tightly linked. Widespread clearing of the floodplain tree Eucalyptus coolabah subsp. coolabah (coolibah), in New South Wales, Australia, has led to state and federal listings of coolibah woodland as an endangered ecological community. Dense regeneration of coolibah in the mid 1970s, however, also resulted in its listing as an ‘invasive native species’ in NSW, meaning it can be legally cleared under certain conditions. Dense regeneration could be a novel state dissimilar to the threatened community or it could represent the next generation of coolibah woodlands and may contribute to passive restoration of heavily cleared landscapes. This study investigated if dense stands are distinct from remnant woodland by comparing floristic composition of the ground-storey community and top-soil properties of four coolibah vegetation states: derived grassland, derived degraded grassland, dense regeneration and remnant woodland. Ground-storey composition was found to overlap broadly among states regardless of tree density. Most species were common to all states, although dense regeneration contained characteristic woodland species that were absent from grasslands. The carbon : nitrogen ratio of the soil was significantly higher in dense regeneration and remnant woodland than in either of the grassland states, indicating that the woody states are broadly similar in terms of nutrient cycling. The study demonstrates that structurally different vegetation states (grasslands, woodlands and dense regeneration) are not associated with distinct plant communities. The results also suggest that grazing management has a more pronounced effect on ground-storey composition of plant communities than tree density and that well managed derived grasslands and dense regeneration are floristically similar to remnant woodlands. Since dense regeneration and remnant woodlands are not floristically distinct from one another, dense regeneration could contribute to the conservation of endangered coolibah woodlands in cleared agricultural landscapes.


2019 ◽  
Vol 44 (2) ◽  
pp. 189-211 ◽  
Author(s):  
Bartosz P Grudzinski ◽  
Hays Cummins ◽  
Teng Keng Vang

Beaver canals and their environmental effects are much less studied than beaver dams, despite being widespread in some beaver-inhabited areas. In this study, we completed a systematic review of previous research on the structure and ecosystem effects of beaver canals to provide an increasingly holistic understanding of these landscape features. Specifically, we: 1) summarized why, where, when, and how beaver develop canals; 2) chronicled all published descriptions on beaver canal morphology; and 3) summarized the literature on the environmental effects of beaver canals. Thirty-one relevant studies were identified and incorporated into this review. Beaver canals have been identified in numerous environments ranging from largely undeveloped mountainous regions to heavily developed agricultural landscapes. Beaver primarily develop canals to increase accessibility to riparian resources, facilitate transport of harvested resources, and to decrease predation risk. As with beaver dams, beaver canals exhibit large structural variability, particularly in lengths, which can be over 0.5 km. Widths of about 1 m and depths of about 0.5 m are common. Beaver canals alter watershed hydrology by creating new aquatic habitats, connecting isolated aquatic features, and diverting water into colonized areas. Beaver canals have been identified as favored habitats for several biotic species and are sometimes used during critical life stages (e.g. dispersal). In addition to increasing overall floral and faunal species richness and diversity, beaver canals may benefit biota by mitigating habitat fragmentation and climate change impacts. Based on the results of this review, incorporating beaver canals into stream restoration practices may be environmentally beneficial.


Phytotaxa ◽  
2016 ◽  
Vol 245 (4) ◽  
pp. 251 ◽  
Author(s):  
Bernadette Grosse-Veldmann ◽  
Barry J Conn ◽  
Maximilian Weigend

Taxon differentiation in Urtica from Australia and New Zealand initially appears to be uncomplicated, with taxa being easy to distinguish. However, a revision of the type material, more recent collections and a comparison of Australian and New Zealand material shows that three of the names are misapplied. Urtica gracilis (as U. dioica subsp. gracilis, North America) has been reported as introduced to New Zealand, but molecular data retrieve the corresponding specimens with the other NZ-species and we argue that they belong to the polygamous Australian species Urtica incisa. A critical revision of the protologues and type collections reveals that the names Urtica incisa, originally described from mainland Australia, and U. incisa var. linearifolia from Tasmania, have been misapplied to New Zealand taxa. Both New Zealand “Urtica linearifolia” and “U. incisa” represent unnamed taxa and are here formally described as Urtica perconfusa and Urtica sykesii, respectively. Urtica perconfusa corresponds to what is erroneously known as U. linearifolia. Urtica sykesii is an overlooked species, erroneously interpreted as U. incisa in New Zealand. It may be differentiated from U. incisa Poir. by its smaller, deltoid leaf lamina with a truncate to subcordate base (versus truncate to cuneate), fewer leaf teeth (9–12 on each side rather than 14–20 in U. incisa) and smaller plant size (20–60 cm rather than 60–200 cm in U. incisa). We found evidence for the presence of true introduced U. dioica subsp. dioica in New Zealand, but not for U. gracilis. Rather, New Zealand specimens assigned to the putatively introduced northern hemisphere U. gracilis belong to U. incisa as described from Australia. Typifications for the species treated here are provided, including an updated key to the Australian and New Zealand taxa. There are thus six native species of Urtica in New Zealand, four of them endemic, and two also indigenous in Australia.


2014 ◽  
Vol 67 ◽  
pp. 327-327
Author(s):  
B.A. Philip ◽  
C.M. Ferguson

Tonic plantain has become a popular forage crop but several Lepidoptera species not traditionally considered pests have caused significant damage in some stands At least two species of looper caterpillars (Family Geometridae) commonly referred to as plantain moths Scopula rubraria and Epyaxa rosearia have been associated with serious defoliation Both are thought to be New Zealand native species with S rubraria also present in Australia Leafroller caterpillars (Family Tortricidae) Merophyas leucaniana (New Zealand native) and M divulsana (Australian species) have also been found damaging plant crowns Scopula rubraria were collected from a Manawatu plantain/grass sward A laboratory colony was Five larval instars for both sexes were observed; mean weights at the start of each instar were 004 032 164 460 and 995 mg Most larval growth occurred in the fifth instar with mean maximum weight being 3565 mg Mean durations of each instar were 54 48 35 42 and 101 days and the total larval stage was 280 days Pupal duration averaged 118 days Resultant adults began laying eggs 12 days after eclosion and these hatched in 7 days The total length of the life cycle was approximately 49 days


2019 ◽  
Author(s):  
Juliana C. Tenius Ribeiro ◽  
André Felippe Nunes-Freitas ◽  
Mariella Camardelli Uzêda

AbstractAgricultural landscapes are seen as areas of extreme importance for studying and developing strategies that integrate biodiversity conservation and ecosystem services with food production. The main strategies for intensifying agriculture are based on conventional practices of frequently using agricultural inputs for fertilization and correction of soil pH. Some studies show that these practices generate impacts on nearby forest fragments through soil contamination, causing an increase in nutrient content. The objective of this study was to identify the impacts on the functional groups of sciophilous and heliophilous species of a tree community of 14 forest fragments near agricultural areas under conventional practices, and raised the hypothesis that the higher the fertility of forest fragments adjacent to intensive agriculture modifies the floristic composition of the tree community. The floristic composition of fragments close to agricultural areas are more similar to each other and the General Linear Model (GLM) results show a clear influence of the intensive farming environment on the richness and abundance of the two functional groups in the forest fragments, directly benefiting the abundance of heliophilous species which are also benefited by the greater declivity and smaller fragment area, while the abundance of sciophytes is negatively correlated with these last two variables. The increase of calcium content is beneficial for the richness of heliophilous species, while the increase in phosphorus content influences a reduction in the richness of sciophyte species, which also respond strongly to the isolation between fragments. The results indicate a dominance trend of pioneer species in nutritionally enriched soils, evidencing that the intense adoption of inputs in cultivated areas causes concrete impacts on the diversity of the tree community of forest fragments, being more determinant for the species richness than the size of the fragments.


2007 ◽  
Vol 47 (4) ◽  
pp. 412 ◽  
Author(s):  
Maurizio G. Paoletti ◽  
Graham H. R. Osler ◽  
Adrianne Kinnear ◽  
Dennis G. Black ◽  
Linda J. Thomson ◽  
...  

Detritivores are small- to medium-sized invertebrates that comminute and break down organic materials such as leaves, twigs and roots, especially within or upon the soil surface, or nearby. Detritivores constitute the majority of the invertebrate biomass pyramid in most environments and provide a key role in organic matter turnover; they also provide alternative food for polyphagous predators that can be active in pest control on crops. Many arthropod taxa are detritivores in soil and litter layers. Here, we focus on the bioindicator potential of three key detritivore groups: slaters, millipedes and oribatid mites. There are possibly 300 species of slaters (terrestrial isopods or Oniscidea) in Australia with 13 of these being introduced, mostly from north-western Europe. These non-native species are the dominant species in disturbed environments such as intensively managed forests and agricultural fields. Slaters are promising indicators of landscape disturbance, soil contamination and tillage. Millipedes are potentially important indicators of stress in agricultural landscapes, given their sensitivity to litter and soil moisture gradients and to physical and chemical perturbations. However, because there is a close association between the millipede fauna and moist plant communities in Australia, they are generally absent from drier landscapes and, therefore, their use as bioindicators in agricultural environments here is problematic. An exception to this association is the increasingly ubiquitous introduced Black Portuguese millipede. This species is tolerant of much drier conditions than most natives, and is likely to change the nature of nutrient cycling processes in pastures and native grasslands in much of southern Australia. Oribatid mites are present in all Australian terrestrial ecosystems. The few studies that have examined their response to disturbance and land use in Australia are consistent with the body of work conducted outside Australia. This consistent response means that the oribatids may be developed as indicators in agricultural, pasture and forested environments. However, the paucity of information on oribatids over appropriate spatial scales in Australia makes the use of this group extremely difficult at this time.


Sign in / Sign up

Export Citation Format

Share Document