Detritivores as indicators of landscape stress and soil degradation

2007 ◽  
Vol 47 (4) ◽  
pp. 412 ◽  
Author(s):  
Maurizio G. Paoletti ◽  
Graham H. R. Osler ◽  
Adrianne Kinnear ◽  
Dennis G. Black ◽  
Linda J. Thomson ◽  
...  

Detritivores are small- to medium-sized invertebrates that comminute and break down organic materials such as leaves, twigs and roots, especially within or upon the soil surface, or nearby. Detritivores constitute the majority of the invertebrate biomass pyramid in most environments and provide a key role in organic matter turnover; they also provide alternative food for polyphagous predators that can be active in pest control on crops. Many arthropod taxa are detritivores in soil and litter layers. Here, we focus on the bioindicator potential of three key detritivore groups: slaters, millipedes and oribatid mites. There are possibly 300 species of slaters (terrestrial isopods or Oniscidea) in Australia with 13 of these being introduced, mostly from north-western Europe. These non-native species are the dominant species in disturbed environments such as intensively managed forests and agricultural fields. Slaters are promising indicators of landscape disturbance, soil contamination and tillage. Millipedes are potentially important indicators of stress in agricultural landscapes, given their sensitivity to litter and soil moisture gradients and to physical and chemical perturbations. However, because there is a close association between the millipede fauna and moist plant communities in Australia, they are generally absent from drier landscapes and, therefore, their use as bioindicators in agricultural environments here is problematic. An exception to this association is the increasingly ubiquitous introduced Black Portuguese millipede. This species is tolerant of much drier conditions than most natives, and is likely to change the nature of nutrient cycling processes in pastures and native grasslands in much of southern Australia. Oribatid mites are present in all Australian terrestrial ecosystems. The few studies that have examined their response to disturbance and land use in Australia are consistent with the body of work conducted outside Australia. This consistent response means that the oribatids may be developed as indicators in agricultural, pasture and forested environments. However, the paucity of information on oribatids over appropriate spatial scales in Australia makes the use of this group extremely difficult at this time.

2021 ◽  
Vol 13 (21) ◽  
pp. 12280
Author(s):  
Colleen Zumpf ◽  
John Quinn ◽  
Jules Cacho ◽  
Nora Grasse ◽  
Maria Cristina Negri ◽  
...  

Perennial bioenergy crop production within intensively managed agricultural landscapes has the potential to improve the sustainability, resiliency, and diversity of these landscapes. Perennial crops are ideal because of their high production potential on marginal lands relative to grain crops (e.g., corn and soybean) and their ability to provide additional ecosystem service benefits. When agricultural landscapes are designed to target specific services, determining the non-targeted services of perennial bioenergy crops can further promote their adoption. This 3-year study addresses this proposition by evaluating the canopy invertebrates and understory plant (non-target crop) communities using bee bowls and point measurement of ground coverage, respectively, within a grain field integrated with shrub willow buffer systems designed for nutrient loss reduction. Greater plant diversity and richness were observed under willow than under grain, resembling that of the surrounding riparian community with more perennial, native species. However, the same relationship did not hold true for invertebrates, with seasonality having a significant influence resulting in similar communities observed in willow and grain plots. The presence of unique plant and invertebrate species in both willow and grain crops as well as foraging pollinators on both crop and non-target crop species highlights the importance of habitat heterogeneity for supporting biodiversity and the potential benefits of buffer bioenergy landscape designs.


2021 ◽  
Vol 11 (12) ◽  
pp. 5423
Author(s):  
Jose Luis Martinez ◽  
Manuel Esteban Lucas-Borja ◽  
Pedro Antonio Plaza-Alvarez ◽  
Pietro Denisi ◽  
Miguel Angel Moreno ◽  
...  

The evaluation of vegetation cover after post-fire treatments of burned lands is important for forest managers to restore soil quality and plant biodiversity in burned ecosystems. Unfortunately, this evaluation may be time consuming and expensive, requiring much fieldwork for surveys. The use of remote sensing, which makes these evaluation activities quicker and easier, have rarely been carried out in the Mediterranean forests, subjected to wildfire and post-fire stabilization techniques. To fill this gap, this study evaluates the feasibility of satellite (using LANDSAT8 images) and drone surveys to evaluate changes in vegetation cover and composition after wildfire and two hillslope stabilization treatments (log erosion barriers, LEBs, and contour-felled log debris, CFDs) in a forest of Central Eastern Spain. Surveys by drone were able to detect the variability of vegetation cover among burned and unburned areas through the Visible Atmospherically Resistant Index (VARI), but gave unrealistic results when the effectiveness of a post-fire treatment must be evaluated. LANDSAT8 images may be instead misleading to evaluate the changes in land cover after wildfire and post-fire treatments, due to the lack of correlation between VARI and vegetation cover. The spatial analysis has shown that: (i) the post-fire restoration strategy of landscape managers that have prioritized steeper slopes for treatments was successful; (ii) vegetation growth, at least in the experimental conditions, played a limited influence on soil surface conditions, since no significant increases in terrain roughness were detected in treated areas.


2021 ◽  
Author(s):  
Franziska Lechleitner ◽  
Christopher C. Day ◽  
Oliver Kost ◽  
Micah Wilhelm ◽  
Negar Haghipour ◽  
...  

<p>Terrestrial ecosystems are intimately linked with the global climate system, but their response to ongoing and future anthropogenic climate change remains poorly understood. Reconstructing the response of terrestrial ecosystem processes over past periods of rapid and substantial climate change can serve as a tool to better constrain the sensitivity in the ecosystem-climate response.</p><p>In this talk, we will present a new reconstruction of soil respiration in the temperate region of Western Europe based on speleothem carbon isotopes (δ<sup>13</sup>C). Soil respiration remains poorly constrained over past climatic transitions, but is critical for understanding the global carbon cycle and its response to ongoing anthropogenic warming. Our study builds upon two decades of speleothem research in Western Europe, which has shown clear correlation between δ<sup>13</sup>C and regional temperature reconstructions during the last glacial and the deglaciation, with exceptional regional coherency in timing, amplitude, and absolute δ<sup>13</sup>C variation. By combining innovative multi-proxy geochemical analysis (δ<sup>13</sup>C, Ca isotopes, and radiocarbon) on three speleothems from Northern Spain, and quantitative forward modelling of processes in soil, karst, and cave, we show how deglacial variability in speleothem δ<sup>13</sup>C is best explained by increasing soil respiration. Our study is the first to quantify and remove the effects of prior calcite precipitation (PCP, using Ca isotopes) and bedrock dissolution (open vs closed system, using the radiocarbon reservoir effect) from the speleothem δ<sup>13</sup>C signal to derive changes in respired δ<sup>13</sup>C over time. Our approach allows us to estimate the temperature sensitivity of soil respiration (Q<sub>10</sub>), which is higher than current measurements, suggesting that part of the speleothem signal may be related to a change in the composition of the soil respired δ<sup>13</sup>C. This is likely related to changing substrate through increasing contribution from vegetation biomass with the onset of the Holocene.</p><p>These results highlight the exciting possibilities speleothems offer as a coupled archive for quantitative proxy-based reconstructions of climate and ecosystem conditions.</p>


2009 ◽  
Vol 6 (8) ◽  
pp. 1371-1388 ◽  
Author(s):  
E. Personne ◽  
B. Loubet ◽  
B. Herrmann ◽  
M. Mattsson ◽  
J. K. Schjoerring ◽  
...  

Abstract. A new biophysical model SURFATM-NH3, simulating the ammonia (NH3) exchange between terrestrial ecosystems and the atmosphere is presented. SURFATM-NH3 consists of two coupled models: (i) an energy budget model and (ii) a pollutant exchange model, which distinguish the soil and plant exchange processes. The model describes the exchanges in terms of adsorption to leaf cuticles and bi-directional transport through leaf stomata and soil. The results of the model are compared with the flux measurements over grassland during the GRAMINAE Integrated Experiment at Braunschweig, Germany. The dataset of GRAMINAE allows the model to be tested in various meteorological and agronomic conditions: prior to cutting, after cutting and then after the application of mineral fertilizer. The whole comparison shows close agreement between model and measurements for energy budget and ammonia fluxes. The major controls on the ground and plant emission potential are the physicochemical parameters for liquid-gas exchanges which are integrated in the compensation points for live leaves, litter and the soil surface. Modelled fluxes are highly sensitive to soil and plant surface temperatures, highlighting the importance of accurate estimates of these terms. The model suggests that the net flux depends not only on the foliar (stomatal) compensation point but also that of leaf litter. SURFATM-NH3 represents a comprehensive approach to studying pollutant exchanges and its link with plant and soil functioning. It also provides a simplified generalised approach (SVAT model) applicable for atmospheric transport models.


2019 ◽  
Author(s):  
Brendan Byrne ◽  
Dylan B. A. Jones ◽  
Kimberly Strong ◽  
Saroja M. Polavarapu ◽  
Anna B. Harper ◽  
...  

Abstract. Interannual variations in temperature and precipitation impact the carbon balance of terrestrial ecosystems, leaving an imprint in atmospheric CO2. Quantifying the impact of climate anomalies on the net ecosystem exchange (NEE) of terrestrial ecosystems can provide a constraint to evaluate terrestrial biosphere models against, and may provide an emergent constraint on the response of terrestrial ecosystems to climate change. We investigate the spatial scales over which interannual variability in NEE can be constrained using atmospheric CO2 observations from the Greenhouse Gases Observing Satellite (GOSAT). NEE anomalies are calculated by performing a series of inversion analyses using the GEOS-Chem model to assimilate GOSAT observations. Monthly NEE anomalies are compared to proxies, variables which are associated with anomalies in the terrestrial carbon cycle, and to upscaled NEE estimates from FLUXCOM. Strong agreement is found in the timing of anomalies in the GOSAT flux inversions with soil temperature and FLUXCOM. Strong correlations are obtained (P  RNINO3.4) in the tropics on continental and larger scales, and in the northern extratropics on sub-continental scales during the summer (R2 ≥ 0.49). These results, in addition to a series of observing system simulation experiments that were conducted, provide evidence that GOSAT flux inversions can isolate anomalies in NEE on continental and larger scales. However, in both the tropics and northern extratropics, the agreement between the inversions and the proxies/FLUXCOM is sensitive to the flux inversion configuration. Our results suggest that regional scales are likely the minimum scales that can be resolved in the tropics using GOSAT observations, but obtaining robust NEE anomaly estimates on these scales may be difficult.


2021 ◽  
Vol 18 (179) ◽  
pp. 20210194
Author(s):  
Raphaël Nussbaumer ◽  
Silke Bauer ◽  
Lionel Benoit ◽  
Grégoire Mariethoz ◽  
Felix Liechti ◽  
...  

To understand the influence of biomass flows on ecosystems, we need to characterize and quantify migrations at various spatial and temporal scales. Representing the movements of migrating birds as a fluid, we applied a flow model to bird density and velocity maps retrieved from the European weather radar network, covering almost a year. We quantified how many birds take-off, fly, and land across Western Europe to (1) track bird migration waves between nights, (2) cumulate the number of birds on the ground and (3) quantify the seasonal flow into and out of the study area through several regional transects. Our results identified several migration waves that crossed the study area in 4 days only and included up to 188 million (M) birds that took-off in a single night. In spring, we estimated that 494 M birds entered the study area, 251 M left it, and 243 M birds remained within the study area. In autumn, 314 M birds entered the study area while 858 M left it. In addition to identifying fundamental quantities, our study highlights the potential of combining interdisciplinary data and methods to elucidate the dynamics of avian migration from nightly to yearly time scales and from regional to continental spatial scales.


2020 ◽  
Vol 9 (1) ◽  
pp. 239-254
Author(s):  
Thomas Wutzler ◽  
Oscar Perez-Priego ◽  
Kendalynn Morris ◽  
Tarek S. El-Madany ◽  
Mirco Migliavacca

Abstract. Soil CO2 efflux is the second-largest carbon flux in terrestrial ecosystems. Its feedback to climate determines model predictions of the land carbon sink, which is crucial to understanding the future of the earth system. For understanding and quantification, however, observations by the most widely applied chamber measurement method need to be aggregated to larger temporal and spatial scales. The aggregation is hampered by random error that is characterized by occasionally large fluxes and variance heterogeneity that is not properly accounted for under the typical assumption of normally distributed fluxes. Therefore, we explored the effect of different distributional assumptions on the aggregated fluxes. We tested the alternative assumption of lognormally distributed random error in observed fluxes by aggregating 1 year of data of four neighboring automatic chambers at a Mediterranean savanna-type site. With the lognormal assumption, problems with error structure diminished, and more reasonable prediction intervals were obtained. While the differences between distributional assumptions diminished when aggregating data of single chambers to an annual value, differences were important on short timescales and were especially pronounced when aggregating across chambers to plot level. Hence we recommend as a good practice that researchers report plot-level fluxes with uncertainties based on the lognormal assumption. Model data integration studies should compare predictions and observations of soil CO2 efflux on a log scale. This study provides methodology and guidance that will improve the analysis of soil CO2 efflux observations and hence improve understanding of soil carbon cycling and climate feedbacks.


2018 ◽  
Vol 169 (2) ◽  
pp. 77-85 ◽  
Author(s):  
Michaela Vítková ◽  
Marco Conedera ◽  
Jiří Sádlo ◽  
Jan Pergl ◽  
Petr Pyšek

Dangerous and useful at the same time: management strategies for the invasive black locust The North American black locust (Robinia pseudoacacia) is considered controversial as many other introduced tree species because of its both positive and negative properties. Based on a literature review and own data we analyze the occurrence of black locust in Czechia and Switzerland and present the management approaches in place. In both countries, black locust is on the blacklist of invasive introduced species. It can grow in a wide range of habitats from urban and agricultural landscape to dry grassland and forest. Meanwhile, the species became in many places part of the environment and human culture, so that neither unrestricted cultivation nor large-scale eradication is feasible. We suggest a context-dependent management which respects the different needs and takes into account the local environmental conditions, land-use, habitat type, risk of spread as well as economic, cultural and biodiversity aspects. To this purpose we propose three management strategies: 1) control respectively gradual suppression of black locust in forests where the species is not welcome, 2) its eradication in sensitive ecosystems as dry grasslands or clear and dry forests and 3) its tolerance in intensively managed agricultural landscapes and in urban environment.


1970 ◽  
pp. 58-60
Author(s):  
Nancy W. Jabbra

This article will focus on two important devotions, May (which is dedicated to Mary),1 and Corpus Christi (the Body of Christ) (which locally includes substantial devotion to Mary) in a village in Lebanon’s Biqa’ Valley. Both of these devotions came from Western Europe, but the Corpus Christi celebration appears to be exclusive to the Zahleh area where the village is located. Women are deeply involved in both of these devotions, thus creating a spiritual space for themselves in an otherwise patriarchal church.


2020 ◽  
Vol 63 (1) ◽  
pp. 1-10
Author(s):  
Mateusz OSZUST ◽  
◽  
Ziemowit OLSZANOWSKI ◽  
Marta PRZYMUSZAŁA ◽  
d Aleksandra JAGIEŁŁO ◽  
...  

Palm houses and other greenhouses, due to maintaining constant temperature and humidity, allow the cultivation in Europe of plants from different parts of the world, even from tropical regions. However, sometimes they are also a habitat for alien species of spiders, mites, insect, etc. These animals have been introduced accidentally with contaminated plants, seeds, seedlings, soil and thanks to stable conditions maintained in greenhouses, they may colonize these places. Example of arthropods, of which even tropical species occur in several greenhouses, are oribatid mites – minute saprophagous arachnids that mostly inhabit soil. In Europe they are represented by about 2,000 species, while worldwide – over 10,000 taxa were described. The aim of this research was to investigate the selected greenhouses for the biodiversity of oribatid mites and the presence of non-native species. In total, 49 taxa were recorded, including 23 alien species (for example, a Neotropical taxon Galumna hamifer, or Oriental Suctobelbella parallelodentata). These results confirm that greenhouses are the places of occurrence of many alien oribatid species. The obtained results may be used in future research on the biology of poorly known tropical mites.


Sign in / Sign up

Export Citation Format

Share Document