The Spermatozoon of Capilloventer Australis and the Systematic Position of the Capilloventridae (Annelida: Oligochaeta)

1996 ◽  
Vol 44 (5) ◽  
pp. 469 ◽  
Author(s):  
M Ferraguti ◽  
C Erseus ◽  
A Pinder

The spermatozoon and spermiogenesis of Capilloventer australis, an oligochaete annelid belonging to the family Capilloventridae, were examined with the aim of supplying further elements for the discussion of the phylogenetic position of the family. Capilloventer australis has a typical oligochaete spermatozoon, with an acrosome tube, mitochondria between the nucleus and flagellum, and a basal cylinder inside the basal body. The acrosome is plesiomorphic, with many characters in common with the Enchytraeidae. The nucleus is twisted, as that of most microdriles, but the middle piece is highly apomorphic in being formed by 11 mitochondria that are not in the usual radial arrangement. The basal cylinder is long and similar to that of the Enchytraeidae. Some features of spermiogenesis, including the acute angle between the nuclear and flagellar axes, are probably plesiomorphic. The spermatological study here presented supports a basal position for the Capilloventridae among the oligochaetes.

2020 ◽  
Author(s):  
Mark S. Harvey ◽  
Michael G. Rix ◽  
Mia J. Hillyer ◽  
Joel A. Huey

Compared with araneomorph spiders, relatively few mygalomorph spiders have evolved an obligate existence in subterranean habitats. The trapdoor spider genus Troglodiplura Main, 1969 and its sole named species T. lowryi Main, 1969 is endemic to caves on the Nullarbor Plain of southern Australia, and is one of the world’s most troglomorphic mygalomorph spiders. However, its systematic position has proved to be difficult to ascertain, largely due to a lack of preserved adults, with all museum specimens represented only by cuticular fragments, degraded specimens or preserved juveniles. The systematic placement of Troglodiplura has changed since it was first described as a member of the Dipluridae, with later attribution to Nemesiidae and then back to Dipluridae. The most recent hypothesis specifically allied Troglodiplura with the Neotropical subfamily Diplurinae, and therefore was assumed to have no close living relatives in Australia. We obtained mitochondrial sequence data from one specimen of Troglodiplura to test these two competing hypotheses, and found that Troglodiplura is a member of the family Anamidae (which was recently separated from the Nemesiidae). We also reassess the morphology of the cuticular fragments of specimens from several different caves, and hypothesise that along with T. lowryi there are four new troglobitic species, here named T. beirutpakbarai Harvey & Rix, T. challeni Harvey & Rix, T. harrisi Harvey & Rix, and T. samankunani Harvey & Rix, each of which is restricted to a single cave system and therefore severely threatened by changing environmental conditions within the caves. The first descriptions and illustrations of the female spermathecae of Troglodiplura are provided. The family Anamidae is further divided into two subfamilies, with the Anaminae Simon containing Aname L. Koch, 1873, Hesperonatalius Castalanelli, Huey, Hillyer & Harvey, 2017, Kwonkan Main, 1983, Swolnpes Main & Framenau, 2009 and Troglodiplura, and the Teylinae Main including Chenistonia Hogg, 1901, Namea Raven, 1984, Proshermacha Simon, 1909, Teyl Main, 1975 and Teyloides Main, 1985. ZooBank Registration: http://zoobank.org/References/2BE2B429-0998-4AFE-9381-B30BDC391E9C


2021 ◽  
Vol 53 (1) ◽  
pp. 45-61
Author(s):  
Damien Ertz ◽  
Neil Sanderson ◽  
Marc Lebouvier

AbstractThe genus Thelopsis was classified in the family Stictidaceae but its systematic position has never been investigated by molecular methods. In order to determine its family placement and to test its monophyly, fungal DNA of recent collections of Thelopsis specimens was sequenced. Phylogenetic analyses using nuLSU, RPB2 and mtSSU sequences reveal that members of Thelopsis form a monophyletic group within the genus Gyalecta as currently accepted. The placement of Thelopsis, including the generic type T. rubella, within the genus Gyalecta challenges the generic circumscription of this group because Thelopsis is well recognized by the combination of morphological characters: perithecioid ascomata, well-developed periphysoids, polysporous asci and small, few-septate ellipsoid-oblong ascospores. The sterile sorediate Opegrapha corticola is also placed in the Gyalectaceae as sister species to Thelopsis byssoidea + T. rubella. Ascomata of O. corticola are illustrated for the first time and support its placement in the genus Thelopsis. The hypothesis that O. corticola might represent the sorediate fertile morph of T. rubella is not confirmed because the species is phylogenetically and morphologically distinct. Thelopsis is recovered as polyphyletic, with T. melathelia being placed as sister species to Ramonia. The new combinations Thelopsis corticola (Coppins & P. James) Sanderson & Ertz comb. nov. and Ramonia melathelia (Nyl.) Ertz comb. nov. are introduced and a new species of Gyalecta, G. amsterdamensis Ertz, is described from Amsterdam and Saint-Paul Islands, characterized by a sterile thallus with discrete soralia. Petractis luetkemuelleri and P. nodispora are accommodated in the new genus Neopetractis, differing from the generic type (P. clausa) by having a different phylogenetic position and a different photobiont. Francisrosea bicolor Ertz & Sanderson gen. & sp. nov. is described for a sterile sorediate lichen somewhat similar to Opegrapha corticola but having an isolated phylogenetic position as sister to a clade including Gyalidea praetermissa and the genera Neopetractis and Ramonia. Gyalecta farlowii, G. nidarosiensis and G. carneola are placed in a molecular phylogeny for the first time. The taxonomic significance of morphological characters in Gyalectaceae is discussed.


Author(s):  
Sergey Sokolov ◽  
Evgeniy Frolov ◽  
Semen Novokreshchennykh ◽  
Dmitry Atopkin

Abstract Liliatrema is a small genus of trematodes consisting of two species. Its systematic position has long been debated, partly because of the confusing reports about the structure of male terminal genitalia. Here we test the phylogenetic position of the genus Liliatrema using data on complete 18S rRNA and partial 28S rRNA gene sequences obtained for Liliatrema skrjabini. We also provide a detailed description of terminal genitalia in adult specimens of L. sobolevi and metacercariae of both Liliatrema species. The results of the 28S rDNA-based phylogenetic analysis indicate that Liliatrema falls within a well-supported clade, which also includes Apophallus and traditional opisthorchiids. This clade, in turn, is nested within a well-supported clade, containing Euryhelmis, Cryptocotyle and Scaphanocephalus. In the 18S+8S rDNA analysis, Liliatrema appears as a sister-taxon to the Cryptocotyle + Euryhelmis group. The Liliatrema + (Cryptocotyle + Euryhelmis) clade is a well-supported sister-group to the traditional opisthorchiids. The morphology of the terminal genitalia of the liliatrematids also corresponds to that of the opisthorchioids. Thus, the results of our morphological and phylogenetic analyses favour an unexpected conclusion that the genus Liliatrema belongs to the Opisthorchioidea. We propose that the genera Liliatrema, Apophallus, Euryhelmis, Cryptocotyle and Scaphanocephalus belong, respectively, within the subfamilies Liliatrematinae, Apophallinae, Euryhelminthinae and Cryptocotylinae of the family Opisthorchiidae.


Author(s):  
Fang-Shuo Hu ◽  
Darren A. Pollock ◽  
Dmitry Telnov

Detailed description and illustrations of immature Trictenotoma Gray, 1832 (Trictenotomidae Blanchard, 1845) are presented for the first time, based on larvae and pupae of T. formosana Kriesche, 1919. Characters exhibited by the mature larva are similar to those described by Gahan (1908) for T. childreni Gray, 1832, which was based on a single specimen. The phylogenetic position of Trictenotomidae has varied among Scarabaeoidea, Chrysomeloidea and Tenebrionoidea, though recent studies place the family clearly among the latter. Features of the immature stages described here corroborate this placement. Evidence supports placement within or near the “salpingid group” (Pythidae, Salpingidae, Boridae, Pyrochroidae). Distinguishing features of the mature trictenotomid larva include the absence of stemmata, antennal sensorium, urogomphal pit(s) and lip, the presence of paired series of longitudinal ridges on the meso- and metathorax and abdominal tergites 1–8 and sternites 2–8, a paired arcuate row of 12–15 asperities on the anterior margin of sternite 9 and relatively short, upturned urogomphi. The systematic position of trictenotomids within the Tenebrionoidea Latreille, 1802 is confirmed. The phylogenetic relationships among Trictenotomidae and other “salpingid group” members (e.g., Pythidae Solier, 1834 and Salpingidae Leach, 1815) are highlighted and discussed, solving an almost two centuries old puzzle in Coleoptera systematics.


2013 ◽  
Vol 58 (2) ◽  
pp. 467-474 ◽  
Author(s):  
Xiaolan He ◽  
Yu Sun

Abstract The monotypic Pleurocladopsis, endemic to Chile, was established by Schuster in 1964 based on an earlier poorly known species Cephalozia (?) simulans C. Massal. The phylogenetic position of Pleurocladopsis simulans had been considered uncertain until it was placed in the family Schistochilaceae on account of the gynoecial and sporophytic characters. It has been assumed that Pleurocladopsis represents the starting point of evolution in Schistochilaceae. In the present study, the phylogenetic position and taxonomic status of Pleurocladopsis simulans are inferred from phylogenetic analysis of three chloroplast DNA sequence data. The result suggests that the genus was established solely based on the autapomorphic characters, thus obscuring its actual phylogenetic relationship with Schistochila and that these characters are later derived rather than ancestral. The result also confirms that the gynoecial and sporophytic characters are important in taxonomy, but they may be not sufficient at the infrafamilial level and at other lower taxonomic levels. In accordance with the results of the present study, Pleurocladopsis is synonymised with Schistochila, and the new combination Schistochila simulans (C. Massal.) Xiao L. He & Yu Sun is made.


2013 ◽  
Vol 82 (4) ◽  
pp. 199-221 ◽  
Author(s):  
Robin Kundrata ◽  
Milada Bocakova ◽  
Ladislav Bocak

The Artematopodidae is a species-poor beetle family with contentious relationships to byrrhoid and elateroid families. Recent molecular phylogenetic analyses brought ambiguous results based on a single sequenced species. We investigated the taxonomic placement of Artematopodidae within Elateriformia using ribosomal (18S, 28S) and mitochondrial (rrnL, cox1) molecular markers and three artematopodid species. Our analyses placed Artematopodidae close to Omethidae+Telegeusidae in a basal position of broadly defined Elateroidea. Additionally, we described the first artematopodid species from China – Eurypogon jaechi sp. nov. and E. heishuiensis sp. nov. These species are reported from mountains of Yunnan and can be easily distinguished from their Palaearctic congeners by their large bodies and metallic green elytra. They differ from each other by the shape of the pronotum, puncturation of the head and pronotum, the relative lengths of the antennomeres 3-5, and the morphology of the female genitalia. With respect to our findings, we discussed the phylogeny, diversity and distribution of the family Artematopodidae.


2010 ◽  
Vol 41 (3) ◽  
pp. 295-302 ◽  
Author(s):  
Martin Carr ◽  
Michael Balke ◽  
Marion Kotrba

AbstractThe placement of Diopsina in a monophyletic clade with Diopsis and Eurydiopsis is confirmed and a sister group relationship between Diopsina and Diopsis recovered with moderate support. The clarification of the phylogenetic position of Diopsina nested deeply within Diopsini is of crucial importance for the understanding of the relationships and the evolution of various morphological characters within the family.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 270
Author(s):  
Dhafer A. Alzahrani

Abutilon fruticosum is one of the endemic plants with high medicinal and economic value in Saudi Arabia and belongs to the family Malvaceae. However, the plastome sequence and phylogenetic position have not been reported until this study. In this research, the complete chloroplast genome of A. fruticosum was sequenced and assembled, and comparative and phylogenetic analyses within the Malvaceae family were conducted. The chloroplast genome (cp genome) has a circular and quadripartite structure with a total length of 160,357 bp and contains 114 unique genes (80 protein-coding genes, 30 tRNA genes and 4 rRNA genes). The repeat analyses indicate that all the types of repeats (palindromic, complement, forward and reverse) were present in the genome, with palindromic occurring more frequently. A total number of 212 microsatellites were identified in the plastome, of which the majority are mononucleotides. Comparative analyses with other species of Malvaceae indicate a high level of resemblance in gene content and structural organization and a significant level of variation in the position of genes in single copy and inverted repeat borders. The analyses also reveal variable hotspots in the genomes that can serve as barcodes and tools for inferring phylogenetic relationships in the family: the regions include trnH-psbA, trnK-rps16, psbI-trnS, atpH-atpI, trnT-trnL, matK, ycf1 and ndhH. Phylogenetic analysis indicates that A. fruticosum is closely related to Althaea officinalis, which disagrees with the previous systematic position of the species. This study provides insights into the systematic position of A. fruticosum and valuable resources for further phylogenetic and evolutionary studies of the species and the Malvaceae family to resolve ambiguous issues within the taxa.


Author(s):  
Mohamed Abd. S. El zayat ◽  
Mahmoud El Sayd Ali ◽  
Mohamed Hamdy Amar

Abstract Background The Capparaceae family is commonly recognized as a caper, while Cleomaceae represents one of small flowering family within the order Brassicales. Earlier, Cleomaceae was included in the family Capparaceae; then, it was moved to a distinct family after DNA evidence. Variation in habits and a bewildering array of floral and fruit forms contributed to making Capparaceae a “trash-basket” family in which many unrelated plants were placed. Indeed, family Capparaceae and Cleomaceae are in clear need of more detailed systematic revision. Results Here, in the present study, the morphological characteristics and the ecological distribution as well as the genetic diversity analysis among the twelve species of both Capparaceae and Cleomaceae have been determined. The genetic analysis has been checked using 15 ISSR, 30 SRAP, and 18 ISTR to assess the systematic knots between the two families. In order to detect the molecular phylogeny, a comparative analysis of the three markers was performed based on the exposure of discriminating capacity, efficiency, and phylogenetic heatmap. Our results indicated that there is a morphological and ecological variation between the two families. Moreover, the molecular analysis confirmed that ISTR followed by SRAP markers has superior discriminating capacity for describing the genetic diversity and is able to simultaneously distinguish many polymorphic markers per reaction. Indeed, both the PCA and HCA data have drawn a successful annotation relationship in Capparaceae and Cleome species to evaluate whether the specific group sort individual or overlap groups. Conclusion The outcomes of the morphological and ecological characterization along with the genetic diversity indicated an insight solution thorny interspecies in Cleome and Gynandropsis genera as a distinct family (Cleomaceae) and the other genera (Capparis, Cadaba, Boscia, and Maerua) as Capparaceae. Finally, we recommended further studies to elucidate the systematic position of Dipterygium glaucum.


2021 ◽  
pp. 1-15
Author(s):  
Juan López-Gappa ◽  
Leandro M. Pérez ◽  
Ana C.S. Almeida ◽  
Débora Iturra ◽  
Dennis P. Gordon ◽  
...  

Abstract Bryozoans with calcified frontal shields formed by the fusion of costae, collectively constituting a spinocyst, are traditionally assigned to the family Cribrilinidae. Today, this family is regarded as nonmonophyletic. In the Argentine Cenozoic, cribrilinids were until recently represented by only two fossil species from the Paleocene of Patagonia. This study describes the first fossil representatives of Jolietina and Parafigularia: J. victoria n. sp. and P. pigafettai n. sp., respectively. A fossil species of Figularia, F. elcanoi n. sp., is also described. The material comes from the early Miocene of the Monte León and Chenque formations (Patagonia, Argentina). For comparison, we also provide redescriptions of the remaining extant species of Jolietina: J. latimarginata (Busk, 1884) and J. pulchra Canu and Bassler, 1928a. The systematic position of some species previously assigned to Figularia is here discussed. Costafigularia n. gen. is erected, with Figularia pulcherrima Tilbrook, Hayward, and Gordon, 2001 as type species. Two species previously assigned to Figularia are here transferred to Costafigularia, resulting in C. jucunda n. comb. and C. tahitiensis n. comb. One species of Figularia is reassigned to Vitrimurella, resulting in V. ampla n. comb. The family Vitrimurellidae is here reassigned to the superfamily Cribrilinoidea. The subgenus Juxtacribrilina is elevated to genus rank. Inferusia is regarded as a subjective synonym of Parafigularia. Parafigularia darwini Moyano, 2011 is synonymized with I. taylori Kuklinski and Barnes, 2009, resulting in Parafigularia taylori n. comb. Morphological data suggest that these genera comprise different lineages, and a discussion on the disparities among cribrilinid (sensu lato) spinocysts is provided. UUID: http://zoobank.org/215957d3-064b-47e2-9090-d0309f6c9cd8


Sign in / Sign up

Export Citation Format

Share Document