scholarly journals Functional self-association of von Willebrand factor during platelet adhesion under flow

2001 ◽  
Vol 99 (1) ◽  
pp. 425-430 ◽  
Author(s):  
B. Savage ◽  
J. J. Sixma ◽  
Z. M. Ruggeri
Blood ◽  
2016 ◽  
Vol 127 (5) ◽  
pp. 637-645 ◽  
Author(s):  
Dominic W. Chung ◽  
Junmei Chen ◽  
Minhua Ling ◽  
Xiaoyun Fu ◽  
Teri Blevins ◽  
...  

Key Points High-density lipoprotein and its major apolipoprotein ApoA-I prevent von Willebrand factor self-association. Targeting von Willebrand factor self-association could be a new approach to treating thrombotic disorders.


1988 ◽  
Vol 60 (01) ◽  
pp. 030-034 ◽  
Author(s):  
Eva Bastida ◽  
Juan Monteagudo ◽  
Antonio Ordinas ◽  
Luigi De Marco ◽  
Ricardo Castillo

SummaryNative von Willebrand factor (N-vWF) binds to platelets activated by thrombin, ADP or ristocetin. Asialo vWF (As-vWF) induces platelet aggregation in absence of platelet activators. N-vWF mediates platelet adhesion to vessel subendothelium at high shear rates. We have investigated the role of As-vWF in supporting platelet deposition to rabbit vessel subendothelium at a shear rate of 2,000 sec-1, using the Baumgartner perfusion system. We have studied the effects of the addition of As-vWF (from 2 to 12 μg/ml) to perfusates consisting of washed red blood cells, 4% human albumin and washed platelets. Our results show a significant increase in platelet deposition on subendothelium (p <0.01) in perfusions to which As-vWF had been added. Blockage of the platelet glycoproteins Ib and IIb/IIIa (GPIb and GPIIb/IIIa) by specific monoclonal antibodies (LJIb1 and LJCP8, respectively) resulted in a decrease of platelet deposition in both types of perfusates prepared with N-vWF and As-vWF. Our results indicate that As-vWF enhances platelet deposition to vessel subendothelium under flow conditions. Furthermore, they suggest that this effect is mediated by the binding of As-vWF to platelet membrane receptors, which in turn, promote platelet spreading and adhesion to the subendothelium.


1996 ◽  
Vol 75 (03) ◽  
pp. 515-519 ◽  
Author(s):  
Mark J Post ◽  
Anke N de Graaf-Bos ◽  
George Posthuma ◽  
Philip G de Groot ◽  
Jan J Sixma ◽  
...  

Summary Purpose. Thermal angioplasty alters the thrombogenicity of the arterial wall. In previous studies, platelet adhesion was found to increase after heating human subendothelium to 55° C and decrease after heating to 90° C. In the present electron microscopic study, the mechanism of this temperature-dependent platelet adhesion to the heated arterial wall is elucidated by investigating temperature-dependent conformational changes of von Willebrand factor (vWF) and collagen types I and III and the binding of vWF to heated collagen. Methods. Purified vWF and/or collagen was applied to electron microscopic grids and heated by floating on a salt-solution of 37° C, 55° C or 90° C for 15 s. After incubation with a polyclonal antibody against vWF and incubation with protein A/gold, the grids were examined by electron microscopy. Results. At 37° C, vWF was coiled. At 55° C, vWF unfolded, whereas heating at 90° C caused a reduction in antigenicity. Collagen fibers heated to 37° C were 60.3 ± 3.1 nm wide. Heating to 55° C resulted in the unwinding of the fibers, increasing the width to 87.5 ± 8.2 nm (p < 0.01). Heating to 90° C resulted in denatured fibers with an enlarged width of 85.1 ± 6.1 nm (p < 0.05). Heating of collagen to 55° C resulted in an increased vWF binding as compared to collagen heated to 37° C or to 90° C. Incubation of collagen with vWF, prior to heating, resulted in a vWF binding after heating to 55° C that was similar to the 37° C binding and a decreased binding after 90° C. Conclusions. After 55° C heating, the von Willebrand factor molecule unfolds and collagen types I and III exhibit an increased adhesiveness for von Willebrand factor. Heating to 90° C denatures von Willebrand factor and collagen. The conformation changes of von Willebrand factor and its altered binding to collagen type I and III may explain the increased and decreased platelet adhesion to subendothelium after 55° C and 90° C heating, respectively.


2011 ◽  
Vol 105 (03) ◽  
pp. 435-443 ◽  
Author(s):  
Veronika Bruno ◽  
Rudolf Jarai ◽  
Susanne Gruber ◽  
Thomas Höchtl ◽  
Ivan Brozovic ◽  
...  

SummaryVon Willebrand factor (vWF) plays an essential role in platelet adhesion and thrombus formation. Patients with atrial fibrillation (AF) exhibit higher plasma vWF and lower ADAMTS13 antigen levels compared to controls. Little is known about vWF and ADAMTS13 in AF patients treated with cardioversion (CV). Thus we investigated the alterations of plasma vWF and ADAMTS13 after CV and evaluated the predictive value of these parameters for recurrence of AF. In this observational study we determined plasma levels of vWF and ADAMTS13 in 77 patients before and immediately after CV, as well as 24 hours (h) and six weeks thereafter, by means of commercially available assays. The vWF/ ADAMTS13-ratio was significantly elevated immediately after CV (p=0.02) and 24 h after CV (p=0.002) as compared to baseline levels. ADAMTS13, 24 h after CV, exhibited a significant association with recurrence of AF (HR: 0.97; p=0.037). Accordingly, tertiles of ADAMTS13 showed a stepwise inverse correlation with the risk of recurrent AF (HR: 0.50; p=0.009). After adjustment for confounders, ADAMTS13 remained significant as an independent predictor of recurrent AF (HR: 0.61; p=0.047). Similarly, the vWF/ADAMTS13-ratio, 24 h after CV, was associated with rhythm stability and remained an independent predictor of recurrent AF (HR: 1.88; p=0.028). The regulation of vWF and its cleaving protease ADAMTS13 after CV might play a critical role in producing a pro-thrombotic milieu immediately after CV for AF. Since ADAMTS13 plasma concentration and the vWF/ADAMTS13-ratio are independently associated with rhythm stability, these indexes might be used for prediction of recurrence of AF.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 1-1
Author(s):  
Amber Federizo

Inherited platelet disorders are recognized as an important cause of mild to severe bleeding in both children and adults. Patients with platelet disorders may present with mucocutaneous bleeding, gastrointestinal bleeding, menorrhagia, postsurgical, and/or excessive bleeding from traumatic injury. Delta storage pool deficiencies (delta-SPD) are among the most frequent platelet disorders, characterized by dysfunctional dense platelet granules. Bernard Soulier syndrome (BSS) is an autosomal recessive platelet disorder caused by mutations in various polypeptides in the GpIb/IX/V complex, which is the principal receptor for von Willebrand factor (VWF). Treatment of platelet disorders is mainly supportive. Normal hemostasis requires VWF and factor VIII (FVIII) to support platelet adhesion and aggregation at sites of vascular injury. von Willebrand factor is a large multimeric glycoprotein present in human plasma as a series of polymers called multimers. Molecular weights for multimers ranges from 500 kDa for the dimer to over 10,000 kDa for the high molecular weight multimers (HMWM) forming the largest known protein present in human plasma. Each multimeric subunit of VWF has binding sites for the receptor GpIb on nonactivated platelets and the receptor GpIIb/IIIa to facilitate platelet adhesion and platelet aggregation, respectively, making the VWF HMWM important for normal platelet function. Desmopressin (DDAVP), which is known to stimulate the release of VWF and FVIII, is commonly used for treatment of platelet disorders. Potentiation of platelet aggregation at high shear rate may be one mechanism by which DDAVP shortens the prolonged bleeding time of patients with congenital platelet defects. For severe bleeding, platelet transfusion may be required, but patients may develop isoantibodies, rendering this therapy ineffective. For this reason, it may be prudent to reserve platelet transfusion in this patient population for emergent situations, such as trauma. Other patients and/or clinical situations may require recombinant active factor VII (rFVIIa), but this therapy is very costly and not always effective and/or available. Antifibrinolytics may also be used but are not always effective. In four (4) patients with platelet disorders (delta-SPD [n=3]; BSS [n=1]), common supportive therapies were not effective, tolerable, and/or available. It was postulated that off-label infusions of a cost-effective von Willebrand factor/coagulation factor VIII (VWF/FVIII) complex (Wilate, Octapharma SA) might be of benefit in these refractory patients (Table 1). The mechanism of action of DDAVP treatment efficacy relies on the release of existing, stored, functional VWF. In refractory patients with suboptimal VWF functionality, it was reasoned that infusion of exogenous, functional VWF and FVIII could potentially encourage platelet adhesion and aggregation. All refractory patients studied were treated successfully with the VWF/FVIII complex with positive clinical outcomes. As mentioned, the adhesive activity of VWF depends on the size of its multimers, and HMWM are the most effective in supporting interaction with collagen and platelet receptors and in facilitating wound healing under conditions of shear stress in the human vascular system. The VWF/FVIII complex utilized in these patients is known to have minimal amounts of the plasma metalloproteinase ADAMTS13. The HMWM of VWF are, under normal conditions, cleaved by ADAMTS13 to smaller, less adhesive multimers. During the manufacturing process, if the ADAMTS13 is not filtered out of the product almost entirely, the VWF in the vial may become highly proteolyzed. Therefore, a reduction or lack of HMWM resulting from inclusion of ADAMTS13 in the manufactured product is believed to reduce product functionality. Multimeric analysis of the VWF/FVIII complex has shown that it exhibits a physiological triplet structure which resembles normal plasma. In addition, the product has a high safety profile and tolerability as protein impurities are eliminated in the manufacturing process. In summary, the use of a VWF/FVIII complex in four (4) patients with inherited platelet disorders, who were refractory to conventional treatments, provided beneficial, cost-effective clinical outcomes with resolution of bleeding. Disclosures Federizo: Octapharma: Consultancy, Honoraria, Other: Publication support, Speakers Bureau; Sanofi: Consultancy, Honoraria, Research Funding, Speakers Bureau; American Thrombosis and Hemostasis Netowrk: Research Funding; Aptevo: Consultancy, Speakers Bureau; National Hemophilia Foundation: Consultancy, Honoraria. OffLabel Disclosure: von Willebrand/FVIII concentrate is currently approved for the treatment of Hemophilia A and von Willebrand. This abstract will review the off-label use of this medication in the treatment of inherited platelet dysfunction.


Blood ◽  
1986 ◽  
Vol 67 (1) ◽  
pp. 19-26 ◽  
Author(s):  
AD Michelson ◽  
J Loscalzo ◽  
B Melnick ◽  
BS Coller ◽  
RI Handin

The binding of von Willebrand factor (vWF) to platelet membrane glycoprotein Ib (GpIb) facilitates platelet adhesion to vascular subendothelium. In this study, we provide evidence that the vWF binding site is on glycocalicin (GC), a proteolytic fragment of GpIb, and we examine the role of the carbohydrate portion of GC on that binding. The binding to platelets of 6D1, a monoclonal antibody that recognizes an epitope on GpIb and blocks ristocetin-induced vWF binding to platelets, was inhibited by purified GC. In addition, purified GC inhibited ristocetin-dependent binding of 125I-labeled vWF to platelets. Since GC contains 60% carbohydrate by weight, we assessed the role of carbohydrate sequences on its interaction with antibody 6D1 and vWF. Based on the known sequence of the major oligosaccharide chain of GC--N- acetyl neuraminic acid, galactose, N-acetyl glucosamine, N-acetyl galactosamine--we treated GC sequentially with neuraminidase, beta- galactosidase, and beta-N-acetylglucosaminidase. Removal of sialic acid and galactose residues did not affect GC binding. Removal of N-acetyl glucosamine residues did not affect GC binding to 6D1 but did decrease the ability of GC to inhibit vWF binding to platelets, increasing the concentration needed to inhibit binding by 50% (IC50) 40-fold. This suggests that a portion of the oligosaccharide chains on GC contributes to the vWF binding activity of this molecule.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 1214-1217
Author(s):  
E Fressinaud ◽  
D Baruch ◽  
C Rothschild ◽  
HR Baumgartner ◽  
D Meyer

Although it is well established that plasma von Willebrand Factor (vWF) is essential to platelet adhesion to subendothelium at high shear rates, the role of platelet vWF is less clear. We studied the respective role of both plasma and platelet vWF in mediating platelet adhesion to fibrillar collagen in a parallel-plate perfusion chamber. Reconstituted blood containing RBCs, various mixtures of labeled washed platelets and plasma from controls or five patients with severe von Willebrand disease (vWD), was perfused through the chamber for five minutes at a shear rate of 1,600 s-1. Platelet-collagen interactions were estimated by counting the radioactivity in deposited platelets and by quantitative morphometry. When the perfusate consisted of normal platelets suspended in normal plasma, platelet deposition on the collagen was 24.7 +/- 3.6 X 10(6)/cm2 (mean +/- SEM, n = 6). Significantly less deposition (16 +/- 2.3) was observed when vWD platelets were substituted for normal platelets. In mixtures containing vWD plasma, significantly greater deposition (9 +/- 2.2) was obtained with normal than with vWD platelets (1 +/- 0.4) demonstrating a role for platelet vWF in mediating the deposition of platelets on collagen. Morphometric analysis confirmed these data. Our findings indicate that platelet, as well as plasma, vWF mediates platelet-collagen interactions at a high shear rate.


Blood ◽  
1985 ◽  
Vol 65 (4) ◽  
pp. 823-831 ◽  
Author(s):  
VT Turitto ◽  
HJ Weiss ◽  
TS Zimmerman ◽  
II Sussman

The present studies were undertaken to determine whether factor VIII/von Willebrand factor (vWF) present in the vessel wall (in addition to that in plasma) may mediate the attachment of platelets to subendothelium. Subendothelium from everted rabbit aorta was exposed to human citrated blood flowing through an annular perfusion chamber at 40 mL/min (wall shear rate of 2,600 s-1 for five minutes). The vessel segments were incubated at 37 degrees C for one hour with various dilutions of either goat-anti-rabbit factor VIII/vWF serum or an IgG fraction prepared from the serum. Control segments were incubated with serum or IgG from a nonimmunized goat. Values of platelet contact (C), platelet adhesion (C + S), and thrombus formation (T) on the subendothelium were evaluated by a morphometric technique. Compared with vessels incubated with fractions prepared from a normal goat, a significant decrease in platelet adhesion (C + S), ranging from 45% to 65%, was observed on vessels incubated with various dilutions (1:5 to 1:50) of either serum or IgG fractions of goat-anti-rabbit factor VIII/vWF. A similar decrease in platelet adhesion was observed with vessels incubated with an F(ab')2 fragment against rabbit factor VIII/vWF prepared in the goat. When goat-anti-rabbit factor VIII/vWF IgG was added to rabbit blood (1:75 dilution), platelet adhesion was reduced to the same extent (65%) on normal rabbit vessels and on vessels pre-incubated with goat-anti-rabbit factor VIII/vWF. Immunofluorescence studies revealed the presence of rabbit factor VIII/vWF in the subendothelium of rabbit aorta and the continued binding of the goat-anti-factor VIII/vWF antibodies on subendothelium during the perfusion studies. No uptake of human factor VIII/vWF on the rabbit subendothelium was observed by this immunologic technique; human factor VIII/vWF was found to be entirely associated with the attached human platelets. Thus, factor VIII/vWF in the vessel wall may mediate platelet attachment to subendothelium in a manner similar to that of plasma factor VIII/vWF.


Author(s):  
Nikolett Wohner ◽  
Silvie Sebastian ◽  
Vincent Muczynski ◽  
Dana Huskens ◽  
Bas Laat ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (23) ◽  
pp. 2425-2434
Author(s):  
Hongxia Fu ◽  
Yan Jiang ◽  
Wesley P. Wong ◽  
Timothy A. Springer

Abstract von Willebrand factor (VWF) is an ultralong concatemeric protein important in hemostasis and thrombosis. VWF molecules can associate with other VWF molecules, but little is known about the mechanism. Hydrodynamic drag exerts tensile force on surface-tethered VWF that extends it and is maximal at the tether point and declines linearly to 0 at the downstream free end. Using single-molecule fluorescence microscopy, we directly visualized the kinetics of binding of free VWF in flow to surface-tethered single VWF molecules. We showed that self-association requires elongation of tethered VWF and that association increases with tension in tethered VWF, reaches half maximum at a characteristic tension of ∼10 pN, and plateaus above ∼25 pN. Association is reversible and hence noncovalent; a sharp decrease in shear flow results in rapid dissociation of bound VWF. Tethered primary VWF molecules can recruit more than their own mass of secondary VWF molecules from the flow stream. Kinetics show that instead of accelerating, the rate of accumulation decreases with time, revealing an inherently self-limiting self-association mechanism. We propose that this may occur because multiple tether points between secondary and primary VWF result in lower tension on the secondary VWF, which shields more highly tensioned primary VWF from further association. Glycoprotein Ibα (GPIbα) binding and VWF self-association occur in the same region of high tension in tethered VWF concatemers; however, the half-maximal tension required for activation of GPIbα is higher, suggesting differences in molecular mechanisms. These results have important implications for the mechanism of platelet plug formation in hemostasis and thrombosis.


Sign in / Sign up

Export Citation Format

Share Document