scholarly journals Genomic analysis reveals few genetic alterations in pediatric acute myeloid leukemia

2009 ◽  
Vol 106 (31) ◽  
pp. 12944-12949 ◽  
Author(s):  
I. Radtke ◽  
C. G. Mullighan ◽  
M. Ishii ◽  
X. Su ◽  
J. Cheng ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 186
Author(s):  
Marcus Bauer ◽  
Christoforos Vaxevanis ◽  
Haifa Kathrin Al-Ali ◽  
Nadja Jaekel ◽  
Christin Le Hoa Naumann ◽  
...  

Background: Myelodysplastic syndromes (MDS) are caused by a stem cell failure and often include a dysfunction of the immune system. However, the relationship between spatial immune cell distribution within the bone marrow (BM), in relation to genetic features and the course of disease has not been analyzed in detail. Methods: Histotopography of immune cell subpopulations and their spatial distribution to CD34+ hematopoietic cells was determined by multispectral imaging (MSI) in 147 BM biopsies (BMB) from patients with MDS, secondary acute myeloid leukemia (sAML), and controls. Results: In MDS and sAML samples, a high inter-tumoral immune cell heterogeneity in spatial proximity to CD34+ blasts was found that was independent of genetic alterations, but correlated to blast counts. In controls, no CD8+ and FOXP3+ T cells and only single MUM1p+ B/plasma cells were detected in an area of ≤10 μm to CD34+ HSPC. Conclusions: CD8+ and FOXP3+ T cells are regularly seen in the 10 μm area around CD34+ blasts in MDS/sAML regardless of the course of the disease but lack in the surrounding of CD34+ HSPC in control samples. In addition, the frequencies of immune cell subsets in MDS and sAML BMB differ when compared to control BMB providing novel insights in immune deregulation.


2021 ◽  
Vol 22 (9) ◽  
pp. 4575
Author(s):  
Vincenza Barresi ◽  
Virginia Di Bella ◽  
Nellina Andriano ◽  
Anna Provvidenza Privitera ◽  
Paola Bonaccorso ◽  
...  

Conventional chemotherapy for acute myeloid leukemia regimens generally encompass an intensive induction phase, in order to achieve a morphological remission in terms of bone marrow blasts (<5%). The majority of cases are classified as Primary Induction Response (PIR); unfortunately, 15% of children do not achieve remission and are defined Primary Induction Failure (PIF). This study aims to characterize the gene expression profile of PIF in children with Acute Myeloid Leukemia (AML), in order to detect molecular pathways dysfunctions and identify potential biomarkers. Given that NUP98-rearrangements are enriched in PIF-AML patients, we investigated the association of NUP98-driven genes in primary chemoresistance. Therefore, 85 expression arrays, deposited on GEO database, and 358 RNAseq AML samples, from TARGET program, were analyzed for “Differentially Expressed Genes” (DEGs) between NUP98+ and NUP98-, identifying 110 highly confident NUP98/PIF-associated DEGs. We confirmed, by qRT-PCR, the overexpression of nine DEGs, selected on the bases of the diagnostic accuracy, in a local cohort of PIF patients: SPINK2, TMA7, SPCS2, CDCP1, CAPZA1, FGFR1OP2, MAN1A2, NT5C3A and SRP54. In conclusion, the integrated analysis of NUP98 mutational analysis and transcriptome profiles allowed the identification of novel putative biomarkers for the prediction of PIF in AML.


2010 ◽  
Vol 28 (28) ◽  
pp. e523-e526 ◽  
Author(s):  
Iris H.I.M. Hollink ◽  
Marry M. van den Heuvel-Eibrink ◽  
Martin Zimmermann ◽  
Brian V. Balgobind ◽  
Susan T.C.J.M. Arentsen-Peters ◽  
...  

Leukemia ◽  
2016 ◽  
Vol 30 (7) ◽  
pp. 1485-1492 ◽  
Author(s):  
C-H Tsai ◽  
H-A Hou ◽  
J-L Tang ◽  
C-Y Liu ◽  
C-C Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document