scholarly journals Ever shorter telomere 1 (EST1)-dependent reverse transcription by Candida telomerase in vitro: Evidence in support of an activating function

2003 ◽  
Vol 100 (10) ◽  
pp. 5718-5723 ◽  
Author(s):  
S. M. Singh ◽  
N. F. Lue
2020 ◽  
Vol 22 (1) ◽  
pp. 58
Author(s):  
Thomas Gremminger ◽  
Zhenwei Song ◽  
Juan Ji ◽  
Avery Foster ◽  
Kexin Weng ◽  
...  

The reverse transcription of the human immunodeficiency virus 1 (HIV-1) initiates upon annealing of the 3′-18-nt of tRNALys3 onto the primer binding site (PBS) in viral RNA (vRNA). Additional intermolecular interactions between tRNALys3 and vRNA have been reported, but their functions remain unclear. Here, we show that abolishing one potential interaction, the A-rich loop: tRNALys3 anticodon interaction in the HIV-1 MAL strain, led to a decrease in viral infectivity and reduced the synthesis of reverse transcription products in newly infected cells. In vitro biophysical and functional experiments revealed that disruption of the extended interaction resulted in an increased affinity for reverse transcriptase (RT) and enhanced primer extension efficiency. In the absence of deoxyribose nucleoside triphosphates (dNTPs), vRNA was degraded by the RNaseH activity of RT, and the degradation rate was slower in the complex with the extended interaction. Consistently, the loss of vRNA integrity was detected in virions containing A-rich loop mutations. Similar results were observed in the HIV-1 NL4.3 strain, and we show that the nucleocapsid (NC) protein is necessary to promote the extended vRNA: tRNALys3 interactions in vitro. In summary, our data revealed that the additional intermolecular interaction between tRNALys3 and vRNA is likely a conserved mechanism among various HIV-1 strains and protects the vRNA from RNaseH degradation in mature virions.


2020 ◽  
Author(s):  
Sumit Handa ◽  
Andres Reyna ◽  
Timothy Wiryaman ◽  
Partho Ghosh

Abstract Diversity-generating retroelements (DGRs) vary protein sequences to the greatest extent known in the natural world. These elements are encoded by constituents of the human microbiome and the microbial ‘dark matter’. Variation occurs through adenine-mutagenesis, in which genetic information in RNA is reverse transcribed faithfully to cDNA for all template bases but adenine. We investigated the determinants of adenine-mutagenesis in the prototypical Bordetella bacteriophage DGR through an in vitro system composed of the reverse transcriptase bRT, Avd protein, and a specific RNA. We found that the catalytic efficiency for correct incorporation during reverse transcription by the bRT-Avd complex was strikingly low for all template bases, with the lowest occurring for adenine. Misincorporation across a template adenine was only somewhat lower in efficiency than correct incorporation. We found that the C6, but not the N1 or C2, purine substituent was a key determinant of adenine-mutagenesis. bRT-Avd was insensitive to the C6 amine of adenine but recognized the C6 carbonyl of guanine. We also identified two bRT amino acids predicted to nonspecifically contact incoming dNTPs, R74 and I181, as promoters of adenine-mutagenesis. Our results suggest that the overall low catalytic efficiency of bRT-Avd is intimately tied to its ability to carry out adenine-mutagenesis.


1992 ◽  
Vol 12 (11) ◽  
pp. 5131-5144
Author(s):  
H Wang ◽  
J C Kennell ◽  
M T Kuiper ◽  
J R Sabourin ◽  
R Saldanha ◽  
...  

The Mauriceville and Varkud plasmids are retroid elements that propagate in the mitochondria of some Neurospora spp. strains. Previous studies of endogenous reactions in ribonucleoprotein particle preparations suggested that the plasmids use a novel mechanism of reverse transcription that involves synthesis of a full-length minus-strand DNA beginning at the 3' end of the plasmid transcript, which has a 3' tRNA-like structure (M. T. R. Kuiper and A. M. Lambowitz, Cell 55:693-704, 1988). In this study, we developed procedures for releasing the Mauriceville plasmid reverse transcriptase from mitochondrial ribonucleoprotein particles and partially purifying it by heparin-Sepharose chromatography. By using these soluble preparations, we show directly that the Mauriceville plasmid reverse transcriptase synthesizes full-length cDNA copies of in vitro transcripts beginning at the 3' end and has a preference for transcripts having the 3' tRNA-like structure. Further, unlike retroviral reverse transcriptases, the Mauriceville plasmid reverse transcriptase begins cDNA synthesis directly opposite the 3'-terminal nucleotide of the template RNA. The ability to initiate cDNA synthesis directly at the 3' end of template RNAs may also be relevant to the mechanisms of reverse transcription used by LINEs, group II introns, and other non-long terminal repeat retroid elements.


2010 ◽  
Vol 76 (17) ◽  
pp. 5676-5683 ◽  
Author(s):  
Ran Zhang ◽  
Shiyuan Peng ◽  
Zhongjun Qin

ABSTRACT Previous reports showed that Streptomyces linear plasmids usually contain one internal replication locus. Here, we identified two new replication loci on pFRL1, one (rep1A-ncs1) next to a telomere and another (rep2A-ncs2) ∼10 kb from it. The rep1A-ncs1 locus was able to direct replication independently in both linear and circular modes, whereas rep2A-ncs2 required an additional locus, rlrA-rorA, in order to direct propagation in linear mode. Rep1A protein bound to ncs1 in vitro. By quantitative reverse transcription-PCR and Northern hybridization, we showed that transcription of rep1A and rep2A varied during development and that each dominated at different time points. pFRL1-derived linear plasmids were inherited through spores more stably than circular plasmids and were more stable with pSLA2 telomeres than with pFRL1 telomeres in Streptomyces lividans.


2015 ◽  
Vol 89 (16) ◽  
pp. 8119-8129 ◽  
Author(s):  
Eytan Herzig ◽  
Nickolay Voronin ◽  
Nataly Kucherenko ◽  
Amnon Hizi

ABSTRACTThe process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting thein vitrodata. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis.IMPORTANCEReverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting thein vitrodata. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity.


2021 ◽  
Author(s):  
Sanela Rankovic ◽  
Akshay Deshpande ◽  
Shimon Harel ◽  
Christopher Aiken ◽  
Itay Rousso

AbstractThe HIV core consists of the viral genome and associated proteins encased by a cone-shaped protein shell termed the capsid. Successful infection requires reverse transcription of the viral genome and disassembly of the capsid shell within a cell in a process known as uncoating. The integrity of the viral capsid is critical for reverse transcription, yet the viral capsid must be breached to release the nascent viral DNA prior to integration. We employed atomic force microscopy to study the stiffness changes in HIV-1 cores during reverse transcription in vitro in reactions containing the capsid-stabilizing host metabolite IP6. Cores exhibited a series of stiffness spikes, with up to three spikes typically occurring between 10-30, 40-80, and 120-160 minutes after initiation of reverse transcription. Addition of the reverse transcriptase (RT) inhibitor efavirenz eliminated the appearance of these spikes and the subsequent disassembly of the capsid, thus establishing that both result from reverse transcription. Using timed addition of efavirenz, and analysis of an RNAseH-defective RT mutant, we established that the first stiffness spike requires minus-strand strong stop DNA synthesis, with subsequent spikes requiring later stages of reverse transcription. Additional rapid AFM imaging experiments revealed repeated morphological changes in cores that were temporally correlated with the observed stiffness spikes. Our study reveals discrete mechanical changes in the viral core that are likely related to specific stages of reverse transcription. Our results suggest that reverse-transcription-induced changes in the capsid progressively remodel the viral core to prime it for temporally accurate uncoating in target cells.


2020 ◽  
Author(s):  
Tian Qi Zhang ◽  
Qingqiang Dai ◽  
Maneesh Kumarsing Beeharry ◽  
Zhenqiang Wang ◽  
Liping Su ◽  
...  

Abstract Background: Gastric Cancer (GC) is one of the leading causes of cancer-related deaths and mortality. Long non-coding RNAs (lncRNAs) such as SNHG12 play important roles in the pathogenesis and progression of cancers. However, the role and significanve of SNHG12 in the metastasis of GC has not yet been thoroughly investigated.Methods: The SNHG12 expression pattern was detected in GC tissue samples from our faculty and cell lines using quantitative reverse transcription PCR. In vivo and in vitro gain and loss assays were conducted to observe the effects of SNHG12 regulation on GC cell metastasis potential. The underlying mechanisms of SNHG12 regulation on EMT and metastatic potential of GC cells were further determined by quantitative reverse transcription PCR, western blotting, dual luciferase reporter assays, co-immunoprecipitation, immunoprecipitation, RIP assays, TOPFlash/FOPFlash reporter assays and Ch-IP assays.Results: SNHG12 was upregulated in GC tissues and cell lines. The expression levels of SNHG12 in GC samples was significantly related to tumor invasion depth, TNM staging and lymph node metastasis, and was associated with poorer DFS and OS in the GC patients. SNHG12 was significantly highly expressed in peritoneal metastatic tissues from GC patients and mice subjects, suggesting a possible role of SNHG12 in peritoneal carcinomatosis from GC. Further in vivo and in vitro gain and loss assays indicated that SNHG12 promoted GC metastasis and EMT. Based on hypothetical bioinformatic analysis findings, our mechanistic analyses revealed that miR-218-5p was a direct target of SNHG12 and suggested that both SNHG12 and miR-218-5p could collectively regulate YWHAZ, forming the SNHG12/ miR-218-5p/YWHAZ axis, hereby decreasing the ubiquitination of β-catenin, thus activating the β-catenin signaling pathway and facilitating metastasis and EMT. Further analysis also revealed that the transcription factor YY1 could negatively modulate SNHG12 transcription.Conclusions: Our findings demonstrate that SNHG12 is be a potential prognostic marker and therapeutic target for GC. Negatively modulated by transcription factor YYI, SNHG12 promotes GC metastasis and EMT by regulating the miR-218-5p/YWHAZ axis and hence activating the β-catenin signaling pathway. Furthermore, we discovered high SNHG12 expression could be related to peritoneal carcinomatosis from GC but this requires further validation.


2019 ◽  
Author(s):  
◽  
Samantha Elizabeth Brady

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Understanding viral RNA structure and how it functions is crucial in elucidating new drug targets. There are many kinds of viruses that utilize RNA as a critical component of their life cycle, such as retroviruses, single-stranded plus or minus sense RNA viruses, and double-stranded RNA viruses. Two viruses that are studied in this thesis are human immunodeficiency virus (HIV), which is a retrovirus, and hepatitis C virus (HCV), which is a single-stranded plus sense RNA virus. It has been previously reported that a human host factor, RNA helicase A (RHA), is packaged into HIV virions by binding to the primer binding site (PBS) segment of the 5'untranslated region in the HIV genomic RNA. We determined RHA is required for efficient reverse transcription prior to capsid uncoating by utilizing cell based and in vitro techniques. It has also been suggested that RHA plays other roles during HIV infection besides reverse transcription. Utilizing NMR, we demonstrated that RHA binds to the monomeric 5'UTR at the bottom of the TAR hairpin, which is different from how it binds during viral packaging. Next, we employed NMR techniques to probe the 3'end of the HCV genome called 3'X. We determined that the 3'X is in structural equilibrium between two states: an open conformation and a closed conformation. These two conformations have been suggested to play a role in minus sense synthesis and viral protein translation, respectively. Taken together, my thesis work has elucidated how many viruses manipulate and utilize their RNA structure to modulate their outcome.


Development ◽  
2001 ◽  
Vol 128 (18) ◽  
pp. 3405-3413 ◽  
Author(s):  
Adi Inbal ◽  
Naomi Halachmi ◽  
Charna Dibner ◽  
Dale Frank ◽  
Adi Salzberg

Homothorax (HTH) is a homeobox-containing protein, which plays multiple roles in the development of the embryo and the adult fly. HTH binds to the homeotic cofactor Extradenticle (EXD) and translocates it to the nucleus. Its function within the nucleus is less clear. It was shown, mainly by in vitro studies, that HTH can bind DNA as a part of ternary HTH/EXD/HOX complexes, but little is known about the transcription regulating function of HTH-containing complexes in the context of the developing fly. Here we present genetic evidence, from in vivo studies, for the transcriptional-activating function of HTH. The HTH protein was forced to act as a transcriptional repressor by fusing it to the Engrailed (EN) repression domain, or as a transcriptional activator, by fusing it to the VP16 activation domain, without perturbing its ability to translocate EXD to the nucleus. Expression of the repressing form of HTH in otherwise wild-type imaginal discs phenocopied hth loss of function. Thus, the repressing form was working as an antimorph, suggesting that normally HTH is required to activate the transcription of downstream target genes. This conclusion was further supported by the observation that the activating form of HTH caused typical hth gain-of-function phenotypes and could rescue hth loss-of-function phenotypes. Similar results were obtained with XMeis3, the Xenopus homologue of HTH, extending the known functional similarity between the two proteins. Competition experiments demonstrated that the repressing forms of HTH or XMeis3 worked as true antimorphs competing with the transcriptional activity of the native form of HTH. We also describe the phenotypic consequences of HTH antimorph activity in derivatives of the wing, labial and genital discs. Some of the described phenotypes, for example, a proboscis-to-leg transformation, were not previously associated with alterations in HTH activity. Observing the ability of HTH antimorphs to interfere with different developmental pathways may direct us to new targets of HTH. The HTH antimorph described in this work presents a new means by which the transcriptional activity of the endogenous HTH protein can be blocked in an inducible fashion in any desired cells or tissues without interfering with nuclear localization of EXD.


Sign in / Sign up

Export Citation Format

Share Document