scholarly journals Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover

2012 ◽  
Vol 109 (38) ◽  
pp. 15479-15484 ◽  
Author(s):  
Yinyue Deng ◽  
Nadine Schmid ◽  
Chao Wang ◽  
Jianhe Wang ◽  
Gabriella Pessi ◽  
...  

Many bacterial pathogens produce diffusible signal factor (DSF)-type quorum sensing (QS) signals in modulation of virulence and biofilm formation. Previous work on Xanthomonas campestris showed that the RpfC/RpfG two-component system is involved in sensing and responding to DSF signals, but little is known in other microorganisms. Here we show that in Burkholderia cenocepacia the DSF-family signal cis-2-dodecenoic acid (BDSF) negatively controls the intracellular cyclic dimeric guanosine monophosphate (c-di-GMP) level through a receptor protein RpfR, which contains Per/Arnt/Sim (PAS)-GGDEF-EAL domains. RpfR regulates the same phenotypes as BDSF including swarming motility, biofilm formation, and virulence. In addition, the BDSF− mutant phenotypes could be rescued by in trans expression of RpfR, or its EAL domain that functions as a c-di-GMP phosphodiesterase. BDSF is shown to bind to the PAS domain of RpfR with high affinity and stimulates its phosphodiesterase activity through induction of allosteric conformational changes. Our work presents a unique and widely conserved DSF-family signal receptor that directly links the signal perception to c-di-GMP turnover in regulation of bacterial physiology.

Author(s):  
Mingfang Wang ◽  
Xia Li ◽  
Shihao Song ◽  
Chaoyu Cui ◽  
Lian-Hui Zhang ◽  
...  

It has been demonstrated that quorum sensing (QS) is widely employed by bacterial cells to coordinately regulate various group behaviors. Diffusible signal factor (DSF)-type signals have emerged as a growing family of conserved cell-cell communication signals. In addition to the DSF signal initially identified in Xanthomonas campestris pv. campestris, B urkholderia d iffusible s ignal f actor (BDSF, cis -2-dodecenoic acid) has been recognized as a conserved DSF-type signal with specific characteristics in both signal perception and transduction from DSF signals. Here, we review the history and current progress of the research of this type of signal, especially focusing on its biosynthesis, signaling pathways, and biological functions. We also discuss and explore the huge potential of targeting this kind of QS system as a new therapeutic strategy to control bacterial infections and diseases.


2019 ◽  
Author(s):  
Cameron C. Oppy ◽  
Leila Jebeli ◽  
Miku Kuba ◽  
Clare V. Oates ◽  
Richard Strugnell ◽  
...  

AbstractO-linked protein glycosylation is a conserved feature of the Burkholderia genus. For Burkholderia cenocepacia, the addition of the trisaccharide β-Gal-(1,3)-α-GalNAc-(1,3)-β-GalNAc to membrane exported proteins is required for virulence and resistance to environmental stress. However, the underlying causes of the defects observed in the absence of glycosylation are unclear. This study demonstrates that the global B. cenocepacia proteome undergoes dramatic changes consistent with alterations in global transcriptional regulation in the absence of glycosylation. Using luciferase reporter assays and DNA cross-linking analysis, we confirm the repression of the master quorum sensing regulon CepR/I in response to the loss of glycosylation, which leads to the abolition of biofilm formation, defects in siderophore production, and reduced virulence. The abundance of most of the known glycosylated proteins did not significantly change in the glycosylation-defective mutants except for BCAL1086 and BCAL2974, which were found in reduced amount, suggesting they could be degraded. However, the loss of these two proteins was not responsible for driving the proteomic alterations, as well as for reduced virulence and siderophore production. Together, our results show that loss of glycosylation in B. cenocepacia results in a global cell reprogramming via alteration of the CepR/I regulon, which cannot be explained by the abundance changes in known B. cenocepacia glycoproteins.IMPORTANCEProtein glycosylation is increasingly recognised as a common protein modification in bacterial species. Despite this commonality our understanding of the role of most glycosylation systems in bacterial physiology and pathogenesis is incomplete. In this work, we investigated the effect of the disruption of O-linked glycosylation in the opportunistic pathogen Burkholderia cenocepacia using a combination of proteomic, molecular and phenotypic assays. We find that in contrast to recent findings on the N-linked glycosylation systems of Campylobacter jejuni, O-linked glycosylation does not appear to play a role in proteome stabilization of most glycoproteins. Our results reveal that virulence attenuation observed within glycosylation-null B. cenocepacia strains are consistent with alteration of the master virulence regulator CepR. The repression of CepR transcription and its associated phenotypes support a model in which the virulence defects observed in glycosylation-null strains are at least in part due to transcriptional alteration and not the direct result of the loss of glycosylation per-se. This research unravels the pleotropic effects of O-linked glycosylation in B. cenocepacia, demonstrating that its loss does not simply affect the stability of the glycoproteome, but also interferes with transcription and the broader proteome.


mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Jeremy T. Ritzert ◽  
George Minasov ◽  
Ryan Embry ◽  
Matthew J. Schipma ◽  
Karla J. F. Satchell

ABSTRACT Cyclic AMP (cAMP) receptor protein (Crp) is an important transcriptional regulator of Yersinia pestis. Expression of crp increases during pneumonic plague as the pathogen depletes glucose and forms large biofilms within lungs. To better understand control of Y. pestis Crp, we determined a 1.8-Å crystal structure of the protein-cAMP complex. We found that compared to Escherichia coli Crp, C helix amino acid substitutions in Y. pestis Crp did not impact the cAMP dependency of Crp to bind DNA promoters. To investigate Y. pestis Crp-regulated genes during plague pneumonia, we performed RNA sequencing on both wild-type and Δcrp mutant bacteria growing in planktonic and biofilm states in minimal media with glucose or glycerol. Y. pestis Crp was found to dramatically alter expression of hundreds of genes in a manner dependent upon carbon source and growth state. Gel shift assays confirmed direct regulation of the malT and ptsG promoters, and Crp was then linked to Y. pestis growth on maltose as a sole carbon source. Iron regulation genes ybtA and fyuA were found to be indirectly regulated by Crp. A new connection between carbon source and quorum sensing was revealed as Crp was found to regulate production of acyl-homoserine lactones (AHLs) through direct and indirect regulation of genes for AHL synthetases and receptors. AHLs were subsequently identified in the lungs of Y. pestis-infected mice when crp expression was highest in Y. pestis biofilms. Thus, in addition to the well-studied pla gene, other Crp-regulated genes likely have important functions during plague infection. IMPORTANCE Bacterial pathogens have evolved extensive signaling pathways to translate environmental signals into changes in gene expression. While Crp has long been appreciated for its role in regulating metabolism of carbon sources in many bacterial species, transcriptional profiling has revealed that this protein regulates many other aspects of bacterial physiology. The plague pathogen Y. pestis requires this global regulator to survive in blood, skin, and lungs. During disease progression, this organism adapts to changes within these niches. In addition to regulating genes for metabolism of nonglucose sugars, we found that Crp regulates genes for virulence, metal acquisition, and quorum sensing by direct or indirect mechanisms. Thus, this single transcriptional regulator, which responds to changes in available carbon sources, can regulate multiple critical behaviors for causing disease.


2005 ◽  
Vol 71 (9) ◽  
pp. 5208-5218 ◽  
Author(s):  
Kerry L. Tomlin ◽  
Rebecca J. Malott ◽  
Gordon Ramage ◽  
Douglas G. Storey ◽  
Pamela A. Sokol ◽  
...  

ABSTRACT Biofilm formation in Burkholderia cenocepacia has been shown to rely in part on acylhomoserine lactone-based quorum sensing. For many other bacterial species, it appears that both the initial adherence and the later stages of biofilm maturation are affected when quorum sensing pathways are inhibited. In this study, we examined the effects of mutations in the cepIR and cciIR quorum-sensing systems of Burkholderia cenocepacia K56-2 with respect to biofilm attachment and antibiotic resistance. We also examined the role of the cepIR system in biofilm stability and structural development. Using the high-throughput MBEC assay system to produce multiple equivalent biofilms, the biomasses of both the cepI and cepR mutant biofilms, measured by crystal violet staining, were less than half of the value observed for the wild-type strain. Attachment was partially restored upon providing functional gene copies via multicopy expression vectors. Surprisingly, neither the cciI mutant nor the double cciI cepI mutant was deficient in attachment, and restoration of the cciI gene resulted in less attachment than for the mutants. Meanwhile, the cciR mutant did show a significant reduction in attachment, as did the cciR cepIR mutant. While there was no change in antibiotic susceptibility with the individual cepIR and cciIR mutants, the cepI cciI mutant biofilms were more sensitive to ciprofloxacin. A significant increase in sensitivity to removal by sodium dodecyl sulfate was seen for the cepI and cepR mutants. Flow cell analysis of the individual cepIR mutant biofilms indicated that they were both structurally and temporally impaired in attachment and development. These results suggest that biofilm structural defects might be present in quorum-sensing mutants of B. cenocepacia that affect the stability and resistance of the adherent cell mass, providing a basis for future studies to design preventative measures against biofilm formation in this species, an important lung pathogen of cystic fibrosis patients.


Author(s):  
Kai Wang ◽  
Xia Li ◽  
Chunxi Yang ◽  
Shihao Song ◽  
Chaoyu Cui ◽  
...  

Quorum sensing (QS) signals are widely employed by bacteria to regulate biological functions in response to cell densities. Previous studies showed that Burkholderia cenocepacia mostly utilizes two types of QS systems, including the N-acylhomoserine lactone (AHL) and cis-2-dodecenoic acid (BDSF) systems, to regulate biological functions. We demonstrated here that a LysR family transcriptional regulator Bcal3178 controls the QS-regulated phenotypes, including biofilm formation and protease production, in B. cenocepacia H111. Expression of Bcal3178 at transcriptional level was obviously down-regulated in both the AHL-deficient and BDSF-deficient mutant strains comparing to the wild-type H111 strain. It was further identified that Bcal3178 regulated target gene expression by directly binding to the promoter DNA regions. We also revealed that Bcal3178 was directly controlled by the AHL system regulator CepR. These results show that Bcal3178 is a new downstream component of the QS signaling network that modulates a subset of genes and functions co-regulated by the AHL and BDSF QS systems in B. cenocepacia. IMPORTANCE Burkholderia cenocepacia is an important opportunistic pathogen in humans, which utilizes the BDSF and AHL quorum sensing (QS) systems to regulate biological functions and virulence. We demonstrated here that a new downstream regulator Bcal3178 of the QS signaling network controls biofilm formation and protease production. Bcal3178 is a LysR family transcriptional regulator modulated by both the BDSF and AHL QS systems. Furthermore, Bcal3178 controls many target genes which are regulated by the QS systems in B. cenocepacia. Collectively, our findings depict a novel molecular mechanism with which QS systems regulate some target gene expression and biological functions by modulating the expression level of a LysR family transcriptional regulator in B. cenocepacia.


2010 ◽  
Vol 76 (14) ◽  
pp. 4675-4683 ◽  
Author(s):  
Yinyue Deng ◽  
Ji'en Wu ◽  
Leo Eberl ◽  
Lian-Hui Zhang

ABSTRACT Previous work has shown that Burkholderia cenocepacia produces the diffusible signal factor (DSF) family signal cis-2-dodecenoic acid (C12:Δ2, also known as BDSF), which is involved in the regulation of virulence. In this study, we determined whether C12:Δ2 production is conserved in other members of the Burkholderia cepacia complex (Bcc) by using a combination of high-performance liquid chromatography, mass spectrometry, and bioassays. Our results show that five Bcc species are capable of producing C12:Δ2 as a sole DSF family signal, while four species produce not only C12:Δ2 but also a new DSF family signal, which was identified as cis,cis-11-methyldodeca-2,5-dienoic acid (11-Me-C12:Δ2,5). In addition, we demonstrate that the quorum-sensing signal cis-11-methyl-2-dodecenoic acid (11-Me-C12:Δ2), which was originally identified in Xanthomonas campestris supernatants, is produced by Burkholderia multivorans. It is shown that, similar to 11-Me-C12:Δ2 and C12:Δ2, the newly identified molecule 11-Me-C12:Δ2,5 is a potent signal in the regulation of biofilm formation, the production of virulence factors, and the morphological transition of Candida albicans. These data provide evidence that DSF family molecules are highly conserved bacterial cell-cell communication signals that play key roles in the ecology of the organisms that produce them.


2019 ◽  
Author(s):  
Jeremy T. Ritzert ◽  
George Minasov ◽  
Ryan Embry ◽  
Matthew J. Schipma ◽  
Karla J. F. Satchell

ABSTRACTCyclic adenosine monophosphate (cAMP) receptor protein (Crp) is an important transcriptional regulator of Yersinia pestis. Expression of crp increases during pneumonic plague as the pathogen depletes glucose and forms large biofilms within lungs. To better understand control of Y. pestis Crp, we determined a 1.8 Å crystal structure of the protein-cAMP complex. We found that compared to Escherichia coli Crp, C helix amino acid substitutions in Y. pestis Crp did not impact cAMP dependency of Crp to bind DNA promoters. To investigate Y. pestis Crp-regulated genes during plague pneumonia, we performed RNA-sequencing on both wild-type and Δcrp mutant bacteria growing in planktonic and biofilm states in minimal media with glucose or glycerol. Y. pestis Crp is found to dramatically alter expression of hundreds of genes dependent upon carbon source and growth state. Gel shift assays confirmed direct regulation of the malT and ptsG promoters and Crp was then linked to Y. pestis growth on maltose as a sole carbon source. Iron-regulation genes ybtA and fyuA were found to be indirectly regulated by Crp. A new connection between carbon source and quorum sensing was revealed as Crp was found to regulate production of acyl-homoserine lactones (AHLs) through direct and indirect regulation of genes for AHL synthetases and receptors. AHLs were subsequently identified in the lungs of Y. pestis infected mice when crp expression is highest in Y. pestis biofilms. Thus, in addition to well-studied pla, other Crp-regulated genes likely have important functions during plague infection.IMPORTANCEBacterial pathogens have evolved extensive signaling pathways to translate environmental signals into changes in gene expression. While Crp has long been appreciated for its role in regulating metabolism of carbon sources in many bacterial species, transcriptional profiling has revealed that this protein regulates many other aspects of bacterial physiology. The plague pathogen, Y. pestis, requires this global regulator to survive in blood, skin, and lungs. During disease progression, this organism adapts to changes within these niches. In addition to regulating genes for metabolism of non-glucose sugars, we find the Crp regulates genes for virulence, metal acquisition and quorum sensing by direct or indirect mechanisms. Thus, this single transcriptional regulator, that responds to changes in available carbon sources, can regulate multiple critical behaviors for causing disease.


mSphere ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Cameron C. Oppy ◽  
Leila Jebeli ◽  
Miku Kuba ◽  
Clare V. Oates ◽  
Richard Strugnell ◽  
...  

ABSTRACT O-linked protein glycosylation is a conserved feature of the Burkholderia genus. The addition of the trisaccharide β-Gal-(1,3)-α-GalNAc-(1,3)-β-GalNAc to membrane exported proteins in Burkholderia cenocepacia is required for bacterial fitness and resistance to environmental stress. However, the underlying causes of the defects observed in the absence of glycosylation are unclear. Using proteomics, luciferase reporter assays, and DNA cross-linking, we demonstrate the loss of glycosylation leads to changes in transcriptional regulation of multiple proteins, including the repression of the master quorum CepR/I. These proteomic and transcriptional alterations lead to the abolition of biofilm formation and defects in siderophore activity. Surprisingly, the abundance of most of the known glycosylated proteins did not significantly change in the glycosylation-defective mutants, except for BCAL1086 and BCAL2974, which were found in reduced amounts, suggesting they could be degraded. However, the loss of these two proteins was not responsible for driving the proteomic alterations, biofilm formation, or siderophore activity. Together, our results show that loss of glycosylation in B. cenocepacia results in a global cell reprogramming via alteration of the transcriptional regulatory systems, which cannot be explained by the abundance changes in known B. cenocepacia glycoproteins. IMPORTANCE Protein glycosylation is increasingly recognized as a common posttranslational protein modification in bacterial species. Despite this commonality, our understanding of the role of most glycosylation systems in bacterial physiology and pathogenesis is incomplete. In this work, we investigated the effect of the disruption of O-linked glycosylation in the opportunistic pathogen Burkholderia cenocepacia using a combination of proteomic, molecular, and phenotypic assays. We find that in contrast to recent findings on the N-linked glycosylation systems of Campylobacter jejuni, O-linked glycosylation does not appear to play a role in proteome stabilization of most glycoproteins. Our results reveal that loss of glycosylation in B. cenocepacia strains leads to global proteome and transcriptional changes, including the repression of the quorum-sensing regulator cepR (BCAM1868) gene. These alterations lead to dramatic phenotypic changes in glycosylation-null strains, which are paralleled by both global proteomic and transcriptional alterations, which do not appear to directly result from the loss of glycosylation per se. This research unravels the pleiotropic effects of O-linked glycosylation in B. cenocepacia, demonstrating that its loss does not simply affect the stability of the glycoproteome, but also interferes with transcription and the broader proteome.


Sign in / Sign up

Export Citation Format

Share Document