scholarly journals Dual-modality gene reporter for in vivo imaging

2013 ◽  
Vol 111 (1) ◽  
pp. 415-420 ◽  
Author(s):  
P. S. Patrick ◽  
J. Hammersley ◽  
L. Loizou ◽  
M. I. Kettunen ◽  
T. B. Rodrigues ◽  
...  
2016 ◽  
Vol 8 (7) ◽  
pp. 4378-4384 ◽  
Author(s):  
Dawei Jiang ◽  
Yanhong Sun ◽  
Jiang Li ◽  
Qian Li ◽  
Min Lv ◽  
...  

2011 ◽  
Author(s):  
Jaehong Key ◽  
Kwangmeyung Kim ◽  
Deepika Dhawan ◽  
Deborah W. Knapp ◽  
Ick Chan Kwon ◽  
...  

2021 ◽  
Author(s):  
Shuangyang Zhang ◽  
Li Qi ◽  
Xipan Li ◽  
Zhichao Liang ◽  
Jian Wu ◽  
...  

AbstractMagnetic resonance imaging (MRI) and photoacoustic tomography (PAT) are two advanced imaging modalities that offer two distinct image contrasts: MRI has a multi-parameter contrast mechanism that provides excellent anatomical soft tissue contrast, whereas PAT is capable of mapping tissue physiological metabolism and exogenous contrast agents with optical specificity. Attempts have been made to integrate these two modalities, but rigid and reliable registration of the images for in vivo imaging is still challenging. In this paper, we present a complete hardware-software solution for the successive acquisition and co-registration of PAT and MRI images in in vivo animal studies. Based on commercial PAT and MRI scanners, our solution includes a 3D-printed dual-modality animal imaging bed, a 3-D spatial image co-registration algorithm with bi-model markers, and a robust modality switching protocol for in vivo imaging studies. Using the proposed solution, we successfully demonstrated co-registered hybrid-contrast PAT-MRI imaging that simultaneously display multi-scale anatomical, functional and molecular characteristics on healthy and cancerous living mice. Week-long longitudinal dual-modality imaging of tumor development reveals information on size, border, vascular pattern, blood oxygenation, and molecular probe metabolism of the tumor micro-environment at the same time. Additionally, by incorporating soft-tissue information in the co-registered MRI image, we further show that PAT image quality could be enhanced by MRI-guided light fluence correction. The proposed methodology holds the promise for a wide range of pre-clinical research applications that benefit from the PAT-MRI dual-modality image contrast.


2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light >600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S588-S588
Author(s):  
Vladimir Kepe ◽  
Gregory M Cole ◽  
Jie Liu ◽  
Dorothy G Flood ◽  
Stephen P Trusko ◽  
...  

2016 ◽  
Vol 54 (12) ◽  
pp. 1343-1404
Author(s):  
A Ghallab ◽  
R Reif ◽  
R Hassan ◽  
AS Seddek ◽  
JG Hengstler

2016 ◽  
Author(s):  
Alysha Bhatti ◽  
Almeida Gilberto Serrano de ◽  
Serena Tommasini Ghelfi ◽  
Alwyn Dart ◽  
Anabel Varela-Carver ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document