scholarly journals Rapid deposition of oxidized biogenic compounds to a temperate forest

2015 ◽  
Vol 112 (5) ◽  
pp. E392-E401 ◽  
Author(s):  
Tran B. Nguyen ◽  
John D. Crounse ◽  
Alex P. Teng ◽  
Jason M. St. Clair ◽  
Fabien Paulot ◽  
...  

We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (∼1 nmol m−2⋅s−1). GEOS−Chem, a widely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS−Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases.

2017 ◽  
Vol 17 (1) ◽  
pp. 343-369 ◽  
Author(s):  
Havala O. T. Pye ◽  
Benjamin N. Murphy ◽  
Lu Xu ◽  
Nga L. Ng ◽  
Annmarie G. Carlton ◽  
...  

Abstract. Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to organic carbon (OM ∕ OC) ratios are high such that separation relative humidities (SRH) are below the ambient relative humidity (RH). As OM ∕ OC ratios in the SE US are often between 1.8 and 2.2, organic aerosol experiences both mixing with inorganic water and separation from it. Regional chemical transport model simulations including inorganic water (but excluding water uptake by organic compounds) in the partitioning medium for secondary organic aerosol (SOA) when RH  >  SRH led to increased SOA concentrations, particularly at night. Water uptake to the organic phase resulted in even greater SOA concentrations as a result of a positive feedback in which water uptake increased SOA, which further increased aerosol water and organic aerosol. Aerosol properties, such as the OM ∕ OC and hygroscopicity parameter (κorg), were captured well by the model compared with measurements during the Southern Oxidant and Aerosol Study (SOAS) 2013. Organic nitrates from monoterpene oxidation were predicted to be the least water-soluble semivolatile species in the model, but most biogenically derived semivolatile species in the Community Multiscale Air Quality (CMAQ) model were highly water soluble and expected to contribute to water-soluble organic carbon (WSOC). Organic aerosol and SOA precursors were abundant at night, but additional improvements in daytime organic aerosol are needed to close the model–measurement gap. When taking into account deviations from ideality, including both inorganic (when RH  >  SRH) and organic water in the organic partitioning medium reduced the mean bias in SOA for routine monitoring networks and improved model performance compared to observations from SOAS. Property updates from this work will be released in CMAQ v5.2.


2016 ◽  
Author(s):  
Havala O. T. Pye ◽  
Benjamin N. Murphy ◽  
Lu Xu ◽  
Ng L. Ng ◽  
Annmarie G. Carlton ◽  
...  

Abstract. Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to organic carbon (OM/OC) ratios are high such that separation relative humidities (SRH) are below the ambient relative humidity (RH). As OM/OC ratios in the SE US are often between 1.8 and 2.2, organic aerosol experiences both mixing with inorganic water and separation from it. Regional chemical transport model simulations including inorganic water (but excluding water uptake by organic compounds) in the partitioning medium for secondary organic aerosol (SOA) when RH > SRH led to increased SOA concentrations, particularly at night. Water uptake to the organic phase resulted in even greater SOA concentrations as a result of a positive feedback in which water uptake increased SOA, which further increased aerosol water and organic aerosol. Aerosol properties, such as the OM/OC and hygroscopicity parameter (κorg), were captured well by the model compared with measurements during the Southern Oxidant and Aerosol Study (SOAS) 2013. Organic nitrates from monoterpene oxidation were predicted to be the least water-soluble semivolatile species in the model, but most biogenically-derived semivolatile species in the CMAQ model were highly water soluble, and expected to contribute to water soluble organic carbon (WSOC). Organic aerosol and SOA precursors were abundant at night; but, additional improvements in daytime organic aerosol are needed to close the model-measurement gap. By taking into account deviations from ideality, including both inorganic (when RH > SRH) and organic water in the organic partitioning medium reduced the mean bias in SOA for routine monitoring networks and improved model performance compared to observations from SOAS. Property updates from this work will be released in CMAQ v5.2.


2020 ◽  
Vol 4 (2) ◽  
pp. 321-327 ◽  
Author(s):  
Amit Sharma ◽  
Narendra Ojha ◽  
Tabish U. Ansari ◽  
Som K. Sharma ◽  
Andrea Pozzer ◽  
...  

2009 ◽  
Vol 9 (14) ◽  
pp. 5281-5297 ◽  
Author(s):  
I. Pison ◽  
P. Bousquet ◽  
F. Chevallier ◽  
S. Szopa ◽  
D. Hauglustaine

Abstract. In order to study the spatial and temporal variations of the emissions of greenhouse gases and of their precursors, we developed a data assimilation system and applied it to infer emissions of CH4, CO and H2 for one year. It is based on an atmospheric chemical transport model and on a simplified scheme for the oxidation chain of hydrocarbons, including methane, formaldehyde, carbon monoxide and molecular hydrogen together with methyl chloroform. The methodology is exposed and a first attempt at evaluating the inverted fluxes is made. Inversions of the emission fluxes of CO, CH4 and H2 and concentrations of HCHO and OH were performed for the year 2004, using surface concentration measurements of CO, CH4, H2 and CH3CCl3 as constraints. Independent data from ship and aircraft measurements and satellite retrievals are used to evaluate the results. The total emitted mass of CO is 30% higher after the inversion, due to increased fluxes by up to 35% in the Northern Hemisphere. The spatial distribution of emissions of CH4 is modified by a decrease of fluxes in boreal areas up to 60%. The comparison between mono- and multi-species inversions shows that the results are close at a global scale but may significantly differ at a regional scale because of the interactions between the various tracers during the inversion.


2021 ◽  
Author(s):  
Samuel Remy ◽  
Zak Kipling ◽  
Vincent Huijnen ◽  
Johannes Flemming ◽  
Swen Metzger ◽  
...  

<p>The Integrated Forecasting System (IFS) of ECMWF is used within the Copernicus Atmosphere Monitoring Service (CAMS) to provide global analyses and forecasts of atmospheric composition, including aerosols as well as reactive trace gases and greenhouse gases.</p><p>The aerosol model of the IFS, IFS-AER, is a simple sectional-bulk scheme that forecasts seven species:  dust, sea-salt, black carbon, organic matter, sulfate, and  since July 2019, nitrate and ammonium.  The main developments that have been recently carried out, tested and are now contemplated for implementation in the next operational version (known as cycle 48r1) are presented here.</p><p>The dry deposition velocities are computed as a function of roughness length, particle size and surface friction velocity, while wet deposition depends mainly on the precipitation fluxes. The parameterizations of both dry and wet deposition have been upgraded with more recent schemes, which have been shown to improve the simulated deposition fluxes for several aerosol species. The impact of this upgrade on the skill scores of simulated aerosol optical depth (AOD) and surface particulate matter concentrations against a range of observations is very positive.</p><p>The simulated surface concentration of nitrate and ammonium are frequently strongly overestimated over Europe and the  United States in the current version of the IFS. Nitrate, ammonium, and their precursors nitric acid and ammonia, were evaluated against a range of ground and remote data and it was found that the recently-implemented gas-particle partitioning scheme is too efficient in producing nitrate and ammonium particles.</p><p>A series of small-scale changes, such as adjusting nitrate dry deposition velocity, direct particulate sulphate emission, and limiting nitrate/ammonium production by the concentration of mineral cations, have been implemented and shown to be effective in improving the simulated surface concentration of  nitrate and ammonium.</p><p>The representation of secondary organic aerosol (SOA) in the IFS has been overhauled with the introduction of a new SOA species, distinct from primary organic matter, with anthropogenic and biogenic components. The implementation of this new species leads to a significant improvement of the simulated surface concentration of organic carbon. An evaluation of simulated SOA concentrations at the surface against climatological values derived from observations using Positive Matrix Factorisation (PMF) techniques also shows a reasonable agreement.</p>


2018 ◽  
Vol 18 (19) ◽  
pp. 14133-14148 ◽  
Author(s):  
Shan S. Zhou ◽  
Amos P. K. Tai ◽  
Shihan Sun ◽  
Mehliyar Sadiq ◽  
Colette L. Heald ◽  
...  

Abstract. Tropospheric ozone is an air pollutant that substantially harms vegetation and is also strongly dependent on various vegetation-mediated processes. The interdependence between ozone and vegetation may constitute feedback mechanisms that can alter ozone concentration itself but have not been considered in most studies to date. In this study we examine the importance of dynamic coupling between surface ozone and leaf area index (LAI) in shaping ozone air quality and vegetation. We first implement an empirical scheme for ozone damage on vegetation in the Community Land Model (CLM) and simulate the steady-state responses of LAI to long-term exposure to a range of prescribed ozone levels (from 0 to 100 ppb). We find that most plant functional types suffer a substantial decline in LAI as ozone level increases. Based on the CLM-simulated results, we develop and implement in the GEOS-Chem chemical transport model a parameterization that computes fractional changes in monthly LAI as a function of local mean ozone levels. By forcing LAI to respond to ozone concentrations on a monthly timescale, the model simulates ozone–LAI coupling dynamically via biogeochemical processes including biogenic volatile organic compound (VOC) emissions and dry deposition, without the complication from meteorological changes. We find that ozone-induced damage on LAI can lead to changes in ozone concentrations by −1.8 to +3 ppb in boreal summer, with a corresponding ozone feedback factor of −0.1 to +0.6 that represents an overall self-amplifying effect from ozone–LAI coupling. Substantially higher simulated ozone due to strong positive feedbacks is found in most tropical forests, mainly due to the ozone-induced reductions in LAI and dry deposition velocity, whereas reduced isoprene emission plays a lesser role in these low-NOx environments. In high-NOx regions such as the eastern US, Europe, and China, however, the feedback effect is much weaker and even negative in some regions, reflecting the compensating effects of reduced dry deposition and reduced isoprene emission (which reduces ozone in high-NOx environments). In remote, low-LAI regions, including most of the Southern Hemisphere, the ozone feedback is generally slightly negative due to the reduced transport of NOx–VOC reaction products that serve as NOx reservoirs. This study represents the first step to accounting for dynamic ozone–vegetation coupling in a chemical transport model with ramifications for a more realistic joint assessment of ozone air quality and ecosystem health.


2016 ◽  
Author(s):  
Sam J. Silva ◽  
Colette L. Heald ◽  
Jeffrey A. Geddes ◽  
Kemen G. Austin ◽  
Prasad S. Kasibhatla ◽  
...  

Abstract. Over recent decades oil palm plantations have rapidly expanded across Southeast Asia (SEA). According to the United Nations, oil palm production in SEA increased by a factor of 3 from 1995 to 2010. We investigate the impacts of current (2010) and future (2020) oil palm expansion in SEA on surface-atmosphere exchange and the resulting air quality in the region. For this purpose, we use satellite data, high-resolution land maps, and the chemical transport model GEOS-Chem. Relative to a no oil palm plantation scenario (~ 1990), overall simulated isoprene emissions in the region increase by 13 % due to oil palm plantations in 2010 and a further 11 % by 2020. In addition, the expansion of palm plantations leads to local increases in ozone deposition velocities of up to 20 %. The net result of these changes is that oil palm expansion in SEA increases surface O3 by up to 3.5 ppbv over dense urban regions, and could rise more than 4.5 ppbv above baseline levels by 2020. Biogenic secondary organic aerosol loadings also increase by up to 1 μg m−3 due to oil palm expansion, and could increase a further 2.5 μg m−3 by 2020. Our analysis indicates that while the impact of recent oil palm expansion on air quality in the region has been significant, the retrieval error and sensitivity of the current constellation of satellite measurements limit our ability to observe these impacts from space. Oil palm expansion is likely to continue to degrade air quality in the region in the coming decade and hinder efforts to achieve air quality regulations in major urban areas such as Kuala Lumpur and Singapore.


2020 ◽  
Vol 13 (3) ◽  
pp. 1137-1153 ◽  
Author(s):  
Yadong Lei ◽  
Xu Yue ◽  
Hong Liao ◽  
Cheng Gong ◽  
Lin Zhang

Abstract. The terrestrial biosphere and atmospheric chemistry interact through multiple feedbacks, but the models of vegetation and chemistry are developed separately. In this study, the Yale Interactive terrestrial Biosphere (YIBs) model, a dynamic vegetation model with biogeochemical processes, is implemented into the Chemical Transport Model GEOS-Chem (GC) version 12.0.0. Within this GC-YIBs framework, leaf area index (LAI) and canopy stomatal conductance dynamically predicted by YIBs are used for dry deposition calculation in GEOS-Chem. In turn, the simulated surface ozone (O3) by GEOS-Chem affect plant photosynthesis and biophysics in YIBs. The updated stomatal conductance and LAI improve the simulated O3 dry deposition velocity and its temporal variability for major tree species. For daytime dry deposition velocities, the model-to-observation correlation increases from 0.69 to 0.76, while the normalized mean error (NME) decreases from 30.5 % to 26.9 % using the GC-YIBs model. For the diurnal cycle, the NMEs decrease by 9.1 % for Amazon forests, 6.8 % for coniferous forests, and 7.9 % for deciduous forests using the GC-YIBs model. Furthermore, we quantify the damaging effects of O3 on vegetation and find a global reduction of annual gross primary productivity by 1.5 %–3.6 %, with regional extremes of 10.9 %–14.1 % in the eastern USA and eastern China. The online GC-YIBs model provides a useful tool for discerning the complex feedbacks between atmospheric chemistry and the terrestrial biosphere under global change.


2019 ◽  
Author(s):  
Xiaoyi Zhao ◽  
Debora Griffin ◽  
Vitali Fioletov ◽  
Chris McLinden ◽  
Jonathan Davies ◽  
...  

Abstract. Pandora spectrometers can retrieve nitrogen dioxide (NO2) vertical column densities (VCDs) via two viewing geometries: direct-sun and zenith-sky. The direct-sun NO2 VCD measurements have high quality (0.1 DU accuracy in clear-sky conditions) and do not rely on any radiative transfer model to calculate air mass factors (AMFs); however, they are not available when the sun is obscured by clouds. To perform NO2 measurements in cloudy conditions, a simple but robust NO2 retrieval algorithm is developed for Pandora zenith-sky measurements. This algorithm derives empirical zenith-sky NO2 AMFs from coincident high-quality direct-sun NO2 observations. Moreover, the retrieved Pandora zenith-sky NO2 VCD data are converted to surface NO2 concentrations with a scaling algorithm that uses chemical-transport-model predictions and satellite measurements as inputs. NO2 VCDs and surface concentrations are retrieved from Pandora zenith-sky measurements made in Toronto, Canada, from 2015 to 2017. The retrieved Pandora zenith-sky NO2 data (VCD and surface concentration) show good agreement with both satellite and in situ measurements. The diurnal and seasonal variations of derived Pandora zenith-sky surface NO2 data also agree well with in situ measurements (diurnal difference within ±2 ppbv). Overall, this work shows that the new Pandora zenith-sky NO2 products have the potential to be used in various applications such as future satellite validation in moderate cloudy scenes and air quality monitoring.


2020 ◽  
Author(s):  
Pascal Wintjen ◽  
Frederik Schrader ◽  
Martijn Schaap ◽  
Burkhard Beudert ◽  
Christian Brümmer

<p>Reactive nitrogen (N<sub>r</sub>) compounds comprise essential nutrients for plants. However, a large supply of nitrogen by fertilization through atmospheric deposition may be harmful for ecosystems such as peatlands and may lead to a loss of biodiversity, soil acidification and eutrophication. In addition, nitrogen compounds may cause adverse human health impacts. Large parts of N<sub>r</sub> emissions originate from anthropogenic activities.  Emission hotspots of ΣN<sub>r</sub>, i.e. the sum of all N<sub>r</sub> compounds, are related to crop production and livestock farming (mainly through ammonia, NH<sub>3</sub>) and fossil fuel combustion by transport and industry (mainly through nitrogen oxides, NO<sub>2 </sub>and NO). Such additional amount of N<sub>r</sub> will enhance its biosphere-atmosphere exchange, affect plant health and can influence its photosynthetic capacity. Therefore, it is necessary to thoroughly estimate the nitrogen exchange between biosphere and atmosphere.</p><p>For measuring the nitrogen mixing ratios a converter for reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter) was used. The TRANC converts all reactive nitrogen compounds, except for nitrous oxide (N<sub>2</sub>O), to nitric oxide (NO) and is coupled to a fast-response chemiluminescence detector (CLD). Due to a low detection limit and a response time of about 0.3s the TRANC-CLD system can be used for flux calculation based on the eddy covariance (EC) technique. Flux losses, which are related to the experimental setup, different response characteristics and the general high reactivity of most N gases and aerosols, occur in the high frequency range. We estimated damping factors of approximately 20% with an empirical cospectral approach.</p><p>For getting a reliable prediction of ΣN<sub>r</sub> fluxes through deposition models, long-term flux measurements offer the possibility to verify the nitrogen uptake capacity and to investigate exchange characteristics of ΣN<sub>r </sub>in different ecosystems.</p><p>In this study, we compare modelled dry deposition fluxes using the deposition module DEPAC (DEPosition of Acidifying Compounds) within the chemical transport model LOTOS-EUROS (LOng Term Ozone Simulation – EURopean Operational Smog) against ΣN<sub>r</sub> flux measurements of the TRANC-CLD for a remote mixed forest site with hardly any local anthropogenic emission sources. This procedure allows to determine the background load and the natural exchange characteristics of nitrogen under low atmospheric concentrations. Therefore, the broad-scale dry deposition predicted directly by LOTOS-EUROS was compared to site-specific modelling results obtained using measured meteorological input data as well as the directly measured ΣN<sub>r</sub> fluxes. In addition, the influence of land-use weighting in LOTOS-EUROS was examined. We further compare our results to ΣN<sub>r</sub> deposition estimates obtained with canopy budget techniques. Measured ΣN<sub>r</sub> dry deposition at the site was 4.5 kg N ha<sup>-</sup><sup>1</sup> yr<sup>-</sup><sup>1</sup>, in close agreement with modelled estimates using DEPAC with measured drivers (5.2 kg N ha<sup>-</sup><sup>1</sup> yr<sup>-</sup><sup>1</sup>) and as integrated in the chemical transport model LOTOS-EUROS (5.2 kg N ha<sup>-</sup><sup>1</sup> yr<sup>-</sup><sup>1</sup> to 6.9 kg N ha<sup>-</sup><sup>1</sup> yr<sup>-</sup><sup>1</sup> depending on the weighting of land-use classes).</p><p>Our study is the first one presenting 2.5 years flux measurements of ΣN<sub>r</sub> above a remote mixed forest. Further verifications of long-term flux measurements against deposition models are useful to improve them and result in better understanding of exchange processes of ΣN<sub>r</sub>.</p>


Sign in / Sign up

Export Citation Format

Share Document