scholarly journals Fly LMBR1/LIMR-type protein Lilipod promotes germ-line stem cell self-renewal by enhancing BMP signaling

2015 ◽  
Vol 112 (45) ◽  
pp. 13928-13933 ◽  
Author(s):  
Darin Dolezal ◽  
Zhiyan Liu ◽  
Qingxiang Zhou ◽  
Francesca Pignoni

Limb development membrane protein-1 (LMBR1)/lipocalin-interacting membrane receptor (LIMR)-type proteins are putative nine-transmembrane receptors that are evolutionarily conserved across metazoans. However, their biological function is unknown. Here, we show that the fly family member Lilipod (Lili) is required for germ-line stem cell (GSC) self-renewal in the Drosophila ovary where it enhances bone morphogenetic protein (BMP) signaling. lili mutant GSCs are lost through differentiation, and display reduced levels of the Dpp transducer pMad and precocious activation of the master differentiation factor bam. Conversely, overexpressed Lili induces supernumerary pMad-positive bamP-GFP–negative GSCs. Interestingly, differentiation of lili mutant GSCs is bam-dependent; however, its effect on pMad is not. Thus, although it promotes stem cell self-renewal by repressing a bam-dependent process, Lilipod enhances transduction of the Dpp signal independently of its suppression of differentiation. In addition, because Lili is still required by a ligand-independent BMP receptor, its function likely occurs between receptor activation and pMad phosphorylation within the signaling cascade. This first, to our knowledge, in vivo characterization of a LMBR1/LIMR-type protein in a genetic model reveals an important role in modulating BMP signaling during the asymmetric division of an adult stem cell population and in other BMP signaling contexts.

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Su Wang ◽  
Yuan Gao ◽  
Xiaoqing Song ◽  
Xing Ma ◽  
Xiujuan Zhu ◽  
...  

Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche.


2008 ◽  
Vol 284 (10) ◽  
pp. 6507-6519 ◽  
Author(s):  
Yingdee Unhavaithaya ◽  
Yi Hao ◽  
Ergin Beyret ◽  
Hang Yin ◽  
Satomi Kuramochi-Miyagawa ◽  
...  

Haematologica ◽  
2019 ◽  
Vol 105 (2) ◽  
pp. e43-e47
Author(s):  
Loïc Maillard ◽  
Sandra Sanfilippo ◽  
Carine Domenech ◽  
Nassima Kasmi ◽  
Laurence Petit ◽  
...  

2020 ◽  
Vol 117 (7) ◽  
pp. 3603-3609 ◽  
Author(s):  
Fan Zou ◽  
Renjun Tu ◽  
Bo Duan ◽  
Zhenlin Yang ◽  
Zhaohua Ping ◽  
...  

5-Methylcytosine (m5C) is a RNA modification that exists in tRNAs and rRNAs and was recently found in mRNAs. Although it has been suggested to regulate diverse biological functions, whether m5C RNA modification influences adult stem cell development remains undetermined. In this study, we show that Ypsilon schachtel (YPS), a homolog of human Y box binding protein 1 (YBX1), promotes germ line stem cell (GSC) maintenance, proliferation, and differentiation in the Drosophila ovary by preferentially binding to m5C-containing RNAs. YPS is genetically demonstrated to function intrinsically for GSC maintenance, proliferation, and progeny differentiation in the Drosophila ovary, and human YBX1 can functionally replace YPS to support normal GSC development. Highly conserved cold-shock domains (CSDs) of YPS and YBX1 preferentially bind to m5C RNA in vitro. Moreover, YPS also preferentially binds to m5C-containing RNAs, including mRNAs, in germ cells. The crystal structure of the YBX1 CSD-RNA complex reveals that both hydrophobic stacking and hydrogen bonds are critical for m5C binding. Overexpression of RNA-binding–defective YPS and YBX1 proteins disrupts GSC development. Taken together, our findings show that m5C RNA modification plays an important role in adult stem cell development.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1274-1274
Author(s):  
Elizabeth Csaszar ◽  
Daniel Kirouac ◽  
Mei Yu ◽  
Caryn Ito ◽  
Peter W. Zandstra

Abstract Abstract 1274 Clinical outcomes of hematopoietic stem cell (HSC) transplantation are correlated with infused progenitor cell dose. Limited cell numbers in a typical umbilical cord blood (UCB) unit restricts the therapeutic potential of UCB and motivates ex vivo expansion of these cells. Strategies to grow HSCs have relied on the supplement of molecules acting directly on the stem cell population; however, in all cases, sustained HSC growth is limited by the concurrent growth of more mature cells and their endogenously produced inhibitory signaling factors. Despite increasing evidence for the important role of intercellular (between cell) communication networks, the identity and impact of non-stem cell autonomous feedback signaling remains poorly understood. Simultaneous kinetic tracking of more than 30 secreted factors produced during UCB culture, including TGF-b1, MIP-1b, and MCP-1, in combination with computational simulations of cell population dynamics, enabled us to develop a global control strategy predicted to reduce inhibitory paracrine signaling and, consequently, increase HSC self-renewal. By maintaining endogenously produced ligands at specified levels using a tuneable fed-batch (automated media dilution) strategy, we achieved significant improvements in expansions of total cell numbers (∼180-fold), CD34+ cells (∼80-fold), and NOD/SCID/IL-2Rgc-null (NSG) repopulating cells (∼11-fold, detected at limiting dilution). The fed-batch strategy has been integrated into an automated bioreactor, allowing for the generation of a clinically-relevant cell product after 12 days of culture, with minimal user manipulation. As this strategy targets the HSC environment and not the stem cells directly, it has the ability to act in combination with other expansion strategies to produce synergistic results. Unexpectedly, supplementation of the soluble protein, TAT-HOXB4, to the system, yielded the expected boost in progenitor expansion only in “sub-optimal” control conditions but not in the fed-batch system. Hypothesizing that the efficacy of HOXB4 may be dependent on the skewing of supportive vs. non-supportive cell populations, and the consequent impact of paracrine ligand production, we performed kinetic tracking of 20 hematopoietic cell types during several supportive (fed-batch, HOXB4 supplemented, Notch ligand Delta1 supplemented) vs. non-supportive (control) cultures. Meta analysis of these data revealed a non-autonomous link between HOXB4, increased megakaryocyte production, and stem cell proliferation, as well as between Notch delta-1 ligand, decreased myeloid cell production, and a decrease in the growth inhibition of stem cells. These predictions have been experimentally validated using co-cultures of sorted purified HSCs and CD41+ megakaryocykes and CD14+ monocytes. Our results identify complex connections between mature cell lineages and stem cell fate decisions and we expect to report a direct link between cell-cell interactions emerging from culture manipulations and the resulting impact on HSC self-renewal. Collectively, these studies support a dominant role for non-stem cell autonomous feedback signaling in the regulation of HSC self-renewal. Overcoming cell non-autonomous inhibition of HSC self-renewal has allowed for novel strategies to enhance HSC numbers ex vivo, thereby facilitating the production of clinically relevant quantities of stem and progenitor cells and enabling more effective strategies to treat hematologic disease. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document