scholarly journals Convective flow reversal in self-powered enzyme micropumps

2016 ◽  
Vol 113 (10) ◽  
pp. 2585-2590 ◽  
Author(s):  
Isamar Ortiz-Rivera ◽  
Henry Shum ◽  
Arjun Agrawal ◽  
Ayusman Sen ◽  
Anna C. Balazs

Surface-bound enzymes can act as pumps that drive large-scale fluid flows in the presence of their substrates or promoters. Thus, enzymatic catalysis can be harnessed for “on demand” pumping in nano- and microfluidic devices powered by an intrinsic energy source. The mechanisms controlling the pumping have not, however, been completely elucidated. Herein, we combine theory and experiments to demonstrate a previously unreported spatiotemporal variation in pumping behavior in urease-based pumps and uncover the mechanisms behind these dynamics. We developed a theoretical model for the transduction of chemical energy into mechanical fluid flow in these systems, capturing buoyancy effects due to the solution containing nonuniform concentrations of substrate and product. We find that the qualitative features of the flow depend on the ratios of diffusivities δ=DP/DS and expansion coefficients β=βP/βS of the reaction substrate (S) and product (P). If δ>1 and δ>β (or if δ<1 and δ<β), an unexpected phenomenon arises: the flow direction reverses with time and distance from the pump. Our experimental results are in qualitative agreement with the model and show that both the speed and direction of fluid pumping (i) depend on the enzyme activity and coverage, (ii) vary with the distance from the pump, and (iii) evolve with time. These findings permit the rational design of enzymatic pumps that accurately control the direction and speed of fluid flow without external power sources, enabling effective, self-powered fluidic devices.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Md Al Mahadi Hasan ◽  
Yuanhao Wang ◽  
Chris R. Bowen ◽  
Ya Yang

AbstractThe development of a nation is deeply related to its energy consumption. 2D nanomaterials have become a spotlight for energy harvesting applications from the small-scale of low-power electronics to a large-scale for industry-level applications, such as self-powered sensor devices, environmental monitoring, and large-scale power generation. Scientists from around the world are working to utilize their engrossing properties to overcome the challenges in material selection and fabrication technologies for compact energy scavenging devices to replace batteries and traditional power sources. In this review, the variety of techniques for scavenging energies from sustainable sources such as solar, air, waste heat, and surrounding mechanical forces are discussed that exploit the fascinating properties of 2D nanomaterials. In addition, practical applications of these fabricated power generating devices and their performance as an alternative to conventional power supplies are discussed with the future pertinence to solve the energy problems in various fields and applications.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2815
Author(s):  
Dong Wan ◽  
Ningchen Ma ◽  
Taochuang Zhao ◽  
Xiaojing Cui ◽  
Zhaosu Wang ◽  
...  

The adaptable monitoring of the ubiquitous magnetic field is of great importance not only for scientific research but also for industrial production. However, the current detecting techniques are unwieldly and lack essential mobility owing to the complex configuration and indispensability of the power source. Here, we have constructed a self-powered magnetic sensor based on a subtle triboelectric nanogenerator (TENG) that consists of a magnetorheological elastomer (MRE). This magnetic sensor relies on triboelectrification and electrostatic induction to produce electrical signals in response to the MRE’s deformation induced by the variational magnetic field without using any external power sources. The fabricated magnetic sensor shows a fast response of 80ms and a desirable sensitivity of 31.6 mV/mT in a magnetic field range of 35–60 mT as well as preliminary vectorability enabled by the multichannel layout. Our work provides a new route for monitoring dynamic magnetic fields and paves a way for self-powered electric-magnetic coupled applications.


2006 ◽  
Vol 963 ◽  
Author(s):  
Chi-Nung Ni ◽  
Christian P. Deck ◽  
Kenneth S Vecchio ◽  
Prabhakar R Bandaru

ABSTRACTThe response of vertically oriented multi-walled nanotubes (MWNTs) to fluid flows forms a basis for monitoring shear forces at the nanoscale. We report on the modulation of polarized light transmission through a MWNT mat, as a function of the nanotube axis relative to the laser polarization. Nanotubes are deflected under fluid flow, with fluid pressures corresponding to pico-Newton range forces. This deflection is measured as a function of transmitted laser light intensity. While the response of the CNTs to the flows could be modeled through standard elastic beam deflection theory, their recovery, after the force removal, invokes viscoelastic behavior due to CNT disentanglement. The fluid flow direction, as well as its pressure, can also be determined by monitoring the change in transmitted laser polarization.


2012 ◽  
Vol 9 (1) ◽  
pp. 175-180
Author(s):  
Yu.D. Chashechkin

According to the results of visualization of streams, the existence of structures in a wide range of scales is noted: from galactic to micron. The use of a fundamental system of equations is substantiated based on the results of comparing symmetries of various flow models with the usage of theoretical group methods. Complete solutions of the system are found by the methods of the singular perturbations theory with a condition of compatibility, which determines the characteristic equation. A comparison of complete solutions with experimental data shows that regular solutions characterize large-scale components of the flow, a rich family of singular solutions describes formation of the thin media structure. Examples of calculations and observations of stratified, rotating and multiphase media are given. The requirements for the technique of an adequate experiment are discussed.


1997 ◽  
Vol 08 (04) ◽  
pp. 793-803 ◽  
Author(s):  
Yu Chen ◽  
Hirotada Ohashi

The lattice-Bhatnagar-Gross-Krook (BGK) method has been used to simulate fluid flow in the nearly incompressible limit. But for the completely incompressible flows, two special approaches should be applied to the general model, for the steady and unsteady cases, respectively. Introduced by Zou et al.,1 the method for steady incompressible flows will be described briefly in this paper. For the unsteady case, we will show, using a simple numerical example, the need to solve a Poisson equation for pressure.


Author(s):  
Yi Shi ◽  
Jianjun Zhu ◽  
Haoyu Wang ◽  
Haiwen Zhu ◽  
Jiecheng Zhang ◽  
...  

Assembled in series with multistage, Electrical Submersible Pumps (ESP) are widely used in offshore petroleum production due to the high production rate and efficiency. The hydraulic performance of ESPs is subjected to the fluid viscosity. High oil viscosity leads to the degradation of ESP boosting pressure compared to the catalog curves under water flow. In this paper, the influence of fluid viscosity on the performance of a 14-stage radial-type ESP under varying operational conditions, e.g. rotational speeds 1800–3500 r/min, viscosities 25–520 cP, was investigated. Numerical simulations were conducted on the same ESP model using a commercial Computational Fluid Dynamics (CFD) software. The simulated average pump head is comparable to the corresponding experimental data under different viscosities and rotational speeds with less than ±20% prediction error. A mechanistic model accounting for the viscosity effect on ESP boosting pressure is proposed based on the Euler head in a centrifugal pump. A conceptual best-match flowrate QBM is introduced, at which the impeller outlet flow direction matches the designed flow direction. The recirculation losses caused by the mismatch of velocity triangles and other head losses resulted from the flow direction change, friction loss and leakage flow etc., are included in the model. The comparison of model predicted pump head versus experimental measurements under viscous fluid flow conditions demonstrates good agreement. The overall prediction error is less than ±10%.


1992 ◽  
Vol 114 (4) ◽  
pp. 847-857 ◽  
Author(s):  
J. H. Wagner ◽  
B. V. Johnson ◽  
R. A. Graziani ◽  
F. C. Yeh

Experiments were conducted to determine the effects of buoyancy and Coriolis forces on heat transfer in turbine blade internal coolant passages. The experiments were conducted with a large-scale, multipass, heat transfer model with both radially inward and outward flow. Trip strips on the leading and trailing surfaces of the radial coolant passages were used to produce the rough walls. An analysis of the governing flow equations showed that four parameters influence the heat transfer in rotating passages: coolant-to-wall temperature ratio, Rossby number, Reynolds number, and radius-to-passage hydraulic diameter ratio. The first three of these four parameters were varied over ranges that are typical of advanced gas turbine engine operating conditions. Results were correlated and compared to previous results from stationary and rotating similar models with trip strips. The heat transfer coefficients on surfaces, where the heat transfer increased with rotation and buoyancy, varied by as much as a factor of four. Maximum values of the heat transfer coefficients with high rotation were only slightly above the highest levels obtained with the smooth wall model. The heat transfer coefficients on surfaces where the heat transfer decreased with rotation, varied by as much as a factor of three due to rotation and buoyancy. It was concluded that both Coriolis and buoyancy effects must be considered in turbine blade cooling designs with trip strips and that the effects of rotation were markedly different depending upon the flow direction.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Reha Abbasi ◽  
Thomas Brian LeFevre ◽  
Aaron David Benjamin ◽  
Isaak John Thornton ◽  
James Nolen Wilking

Hydrogels are soft, water-based polymer gels that are increasingly used to fabricate free-standing fluidic devices for tissue and biological engineering applications. In many of these applications, pressurized liquid must be...


Sign in / Sign up

Export Citation Format

Share Document