scholarly journals Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo

2016 ◽  
Vol 113 (7) ◽  
pp. 1883-1888 ◽  
Author(s):  
Francesco R. Simonetti ◽  
Michele D. Sobolewski ◽  
Elizabeth Fyne ◽  
Wei Shao ◽  
Jonathan Spindler ◽  
...  

Reservoirs of infectious HIV-1 persist despite years of combination antiretroviral therapy and make curing HIV-1 infections a major challenge. Most of the proviral DNA resides in CD4+T cells. Some of these CD4+T cells are clonally expanded; most of the proviruses are defective. It is not known if any of the clonally expanded cells carry replication-competent proviruses. We report that a highly expanded CD4+ T-cell clone contains an intact provirus. The highly expanded clone produced infectious virus that was detected as persistent plasma viremia during cART in an HIV-1–infected patient who had squamous cell cancer. Cells containing the intact provirus were widely distributed and significantly enriched in cancer metastases. These results show that clonally expanded CD4+T cells can be a reservoir of infectious HIV-1.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3553-3553
Author(s):  
Attilio Bondanza ◽  
Lothar Hambach ◽  
Zohara Aghai ◽  
Monica Casucci ◽  
Bart Nijmeijer ◽  
...  

Abstract Abstract 3553 Poster Board III-490 Introduction Minor histocompatibility antigens (mHag) play a major role in the graft-versus-leukemia (GvL) effect following HLA-matched allogeneic hemopoietic cell transplantation (allo-HCT). Clinically, the GvL effect coincides with the emergence of mHag-specific CD8+ cytotoxic T lymphocytes (CTL). Experimentally, targeting a single mHag with human CD8+ CTL has a major anti-leukemia effect in NOD/scid mice. Altogether, these observations suggest that mHag-specific cytotoxicity by CD8+ T cells is an important component of the GvL effect. In contrast, little is known on the contribution of mHag-specific CD4+ T cells. Female-to-male allo-HCT is characterized by a low rate of leukemia relapse, indicating that H-Y-encoded mHag are potent leukemia-regression antigens. Earlier, we described a DRB3*0301-restricted H-Y mHag epitope inducing CD4+ helper T-cell responses in H-Y-mismatched HLA-matched allo-HCT. Aim: The aim of this study is to elucidate the role of mHag-specific human CD4+ T lymphocytes on the GvL effect. Methods The ALL-CM leukemia cell line, derived from a male (i.e. H-Y+) HLA-A0201+, DRB30301+ patient, reproducibly engrafts in NOD/scid mice after administration of 10×106 cells. Both an HLA-A0201-restricted H-Y-specific CD8+ CTL clone and the DRB30301-restricted H-Y-specific CD4+ helper T-cell clone that we earlier described were used to investigate the anti-leukemia efficacy of CD8+ and CD4+ T cells in NOD/scid mice. Results In vitro, the CD8+ H-Y specific CTL clone was highly cytotoxic against the ALL-CM leukemia. The H-Y specific CD4+ helper T-cell clone did not lyse the leukemia, but produced IFN-γ upon recognition. Infusion of the H-Y-specific CD8+ CTL clone (25×106 cells/mouse) 3 days after ALL-CM leukemia challenge significantly delayed leukemia progression by 3 weeks compared to a CMV-specific CD8+ CTL control clone (p<0,001). Despite no measurable in vitro cytotoxicity, the H-Y-specific CD4+ helper T-cell clone (25×106 cells/mouse) delayed leukemia progression by 2 weeks compared to a leukemia non-reactive HLA-DR1-specific CD4+ helper T-cell control clone (p<0,001). In vitro co-incubation of the H-Y-specific CD4+ helper T-cell clone did not influence leukemia proliferation but induced up-regulation of MHC-class I and II, CD80, CD86 and CD40. In vitro, pre-incubation of leukemia cells with the H-Y-specific CD4+ helper T-cell clone irradiated did not improve the in vivo anti-leukemia efficacy of the H-Y-specific CD8+ CTL clone. Co-infusion of the H-Y specific CD4+ helper T-cell clone did not augment the in vivo persistence of the H-Y-specific CD8+ CTL T-cell clone. Nevertheless, the co-infusion resulted in a delay in leukemia progression of approximately 5 weeks, suggesting an additive, non overlapping anti-leukemia mechanism. Conclusions Minor Hag-specific human CD4+ T lymphocytes may contribute to the GvL effect through a direct, non cytotoxic mechanism, which could be additive to that of CD8+ CTL. The nature of this non cytotoxic GvL effect is currently under investigation. A.B. and L.H. equally contributed to this study. Disclosures: No relevant conflicts of interest to declare.


1998 ◽  
Vol 188 (9) ◽  
pp. 1725-1738 ◽  
Author(s):  
Rafael L. Ufret-Vincenty ◽  
Laura Quigley ◽  
Nancy Tresser ◽  
Seong Hee Pak ◽  
Ameer Gado ◽  
...  

A peptide derived from the human papillomavirus L2 protein is recognized by a myelin basic protein (MBP)-specific T cell clone from a multiple sclerosis patient and by MBP-specific autoantibodies purified from multiple sclerosis brain tissue. We now show in mice that low doses of this papillomavirus peptide were optimal in selecting a subpopulation of papillomavirus peptide–specific T cells that cross-reacted with MBP(87–99) and with an unrelated viral peptide derived from the BSLF1 protein of Epstein-Barr virus (EBV). These low dose viral peptide– specific T cell lines were highly encephalitogenic. Splenocytes from mice transferred with viral peptide–specific T cells showed a vigorous response to both the papillomavirus and MBP peptides, indicating that viral antigen–specific T cells survived for a prolonged time in vivo. The EBV peptide, unable to prime and select an autoreactive T cell population, could still activate the low dose papillomavirus peptide–specific cells and induce central nervous system (CNS) autoimmunity. Cytokine profiles of papillomavirus peptide–specific encephalitogenic T cells and histopathology of CNS lesions resembled those induced by MBP. These results demonstrate conserved aspects in the recognition of the self-antigen and a cross-reactive viral peptide by human and murine MBP-specific T cell receptors. We demonstrate that a viral antigen, depending on its nature, dose, and number of exposures, may select autoantigen-specific T cells that survive in vivo and can trigger autoimmune disease after adoptive transfer.


Blood ◽  
2003 ◽  
Vol 101 (12) ◽  
pp. 4916-4922 ◽  
Author(s):  
Jayant Thatte ◽  
Vrushali Dabak ◽  
Mark B. Williams ◽  
Thomas J. Braciale ◽  
Klaus Ley

AbstractThe adhesion molecules involved in the migration and retention of activated effector CD8 T cells in the lung microcirculation and their recruitment into lung tissue are largely unknown. Here, we have analyzed the role of lymphocyte function–associated antigen-1 (LFA-1) and very late antigen-4 (VLA-4) on adhesion of influenza hemagglutinin (HA)–specific CD8 T-cell clone D4 under shear conditions in an in vitro binding assay and in an in vivo homing assay to the lungs of naive or transgenic Balb/c mice expressing HA (HA-Tg) by a lung-specific promoter. Blocking LFA-1 or intercellular adhesion molecule 1 (ICAM-1) significantly inhibited adhesion of D4 cells to lung vascular endothelium and parenchyma of lung sections. However, blocking VLA-4 or vascular cell adhesion molecule 1 (VCAM-1) had no effect on cell adhesion. Blocking LFA-1 in vivo significantly delayed lethal injury following adoptive transfer of D4 cells into HA-Tg mice as assessed by weight loss and histology. Residence time of adoptively transferred Indium 111 (111In)–labeled D4 cells in lungs of normal and HA-Tg mice as analyzed by dual modality imaging revealed a significantly shorter transit time of 4 hours for the D4 cells upon in vivo blockade of LFA-1. These results demonstrate a crucial role for LFA-1 in retention of activated CD8 T cells in normal mouse lungs and in the progression of lethal injury in HA-Tg mice.


1988 ◽  
Vol 168 (3) ◽  
pp. 1181-1186 ◽  
Author(s):  
S S Zamvil ◽  
D J Mitchell ◽  
M B Powell ◽  
K Sakai ◽  
J B Rothbard ◽  
...  

Immunization with the autoantigen myelin basic protein (MBP) causes experimental allergic encephalomyelitis (EAE). Initial investigations indicated that encephalitogenic murine determinants of MBP were located only within MBP 1-37 and MBP 89-169. Encephalitogenic T cell epitopes within these fragments have been identified. Each epitope is recognized by T cells in association with separate allelic I-A molecules. A hybrid I-E-restricted T cell clone that recognizes intact mouse (self) MBP has been examined. The epitope recognized by this clone includes MBP residues 35-47. When tested in vivo, p35-47 causes EAE. T cell recognition of p35-47 occurs only in association with I-E molecules. These results provide the first clear example that antigen-specific T cells restricted by I-E class II molecules participate in murine autoimmune disease. Furthermore, it is clear that there are multiple (at least three) discrete encephalitogenic T cell epitopes of this autoantigen, each recognized in association with separate allelic class II molecules. These results may be relevant to human autoimmune diseases whose susceptibility is associated with more than one HLA-D molecule.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 141-141
Author(s):  
Caroline Arber ◽  
Xiang Feng ◽  
Harshal Abhyankar ◽  
Helen E. Heslop ◽  
Malcolm K. Brenner ◽  
...  

Abstract Survivin is broadly expressed by hematological malignancies as well as by solid tumors and may be a suitable target for T-cell immunotherapy. Previously, the utility of this target has been challenged by the occurrence of “fratricide” when T cells expressing a high avidity survivin-specific T cell receptor (TCR) killed each other because survivin epitopes can be presented by the T cells themselves (Leisegang M et al, J Clin Invest. 2010 Nov;120(11):3869-77). To overcome this obstacle, we used limiting dilution to isolate a new T-cell clone targeting the HLA-A*02-restricted survivin epitope ELT (survivin95-104) and its variant LML (survivin96-10497M) starting from autologous cultures, rather than from the allogeneic cultures previously used for this approach. In 51Chromium (Cr)-release assays, this T-cell clone, with nanomolar avidity, displayed specific killing against the survivin+HLA-A*02+ leukemia cells BV173 (39±16% specific lysis, E:T 40:1) and multiple myeloma cells U266 (20±7%) but not against HLA-A*02– HL-60 cells (2±2%). Furthermore, the colony formation of primary myeloid leukemias was inhibited (>50% reduction) while that of healthy bone marrow (BM) was unaffected. The TCR α- and β-chains were then cloned in an optimized retroviral vector that was used to transduce CD8+ T cells which then efficiently expressed the transgenic αβTCR (89±4%, n=6). As compared to non-transduced (NT) T cells, survivin-αβTCR+ T cells produced significant lysis of BV173 (46±14% vs 8±6%, E:T 20:1, n=12, p<0.001) and U266 (27±12% vs 14±6%, p=0.003) but not of HL-60 (14±7 vs 14±6 %, p=NS). Blocking the target cells with specific anti-MHC class I antibodies confirmed the HLA-restriction of TCR transgenic T cells. Importantly, transgenic cells recapitulated the function of the original clone by inhibiting colony formation (range 32-78% reduction, n=5) of primary myeloid leukemias while preserving normal clonogenic capacity of healthy BM or cord blood (n=5). When tested in vivo in a xenograft model of established systemic acute leukemia (FFLuc+BV173) using bioluminescent imaging, leukemia progression was significantly slower in mice treated with survivin-αβTCR+ versus NT T cells (40x106 ± 71x106 vs. 128 x 106 ± 176 x 106 photons/sec by day 28) (p=0.04) and survival improved (n=12/group, p=0.01). This effect was even more pronounced when T cells were transferred to mice with limited leukemia burden (bioluminescent signal by day 40: 8.1 x 106 ± 9 x 106 vs. 195 x 106 ± 85 x 106 photons/sec) (p=0.003, n=10/group). Overall survival was improved by day 80 (p<0.001) and 3/10 mice treated with TCR+ T cells completely cleared the leukemia. Crucially, the TCR cloned from our autologous culture system produced no fratricidal activity in 51Cr-release assays against HLA-A*02+ activated T cells (1±2%, E:T 20:1, n=7). Activated T cells were only killed by TCR+ T cells when they were also pulsed with survivin peptides (46±12% for LML, 68±14% for ELT, n=7). To elucidate at the molecular level why our “autologous” TCR had selective antitumor activity unlike the fratricidal activity of “allogeneic” TCRs (Leisegang M et al, J Clin Invest. 2010 Nov;120(11):3869-77), we modeled the structure of each TCR-peptide-HLA ternary complex using the Rosetta software. While the overall binding energies of TCR-peptide-HLA interfaces for both TCRs were similar, the “autologous” TCR showed a 48% higher binding energy contribution for the peptide as compared to the fratricidal TCR, whose interaction was primarily with the HLA molecule rather than with the survivin peptide in the HLA-binding groove. In conclusion, we have cloned a novel survivin-TCR with a highly epitope-specific binding mode that can be efficiently expressed in polyclonal T cells and provides antitumor activity in vitro and in vivo without affecting the survival of T cells or normal hematopoietic progenitors. Our results indicate that maximal recognition of the peptide presented in the HLA groove is critical for TCR selectivity. Disclosures: Heslop: Celgene: Patents & Royalties; Cell Medica: Patents & Royalties. Brenner:Celgene: Patents & Royalties, Research Funding. Dotti:Celgene: Patents & Royalties, Research Funding. Savoldo:Celgene: Patents & Royalties, Research Funding.


Blood ◽  
2001 ◽  
Vol 98 (5) ◽  
pp. 1480-1488 ◽  
Author(s):  
Alexander Kiani ◽  
Francisco J. Garcı́a-Cózar ◽  
Ivonne Habermann ◽  
Stefanie Laforsch ◽  
Toni Aebischer ◽  
...  

Transcription factors of the nuclear factor of activated T cells (NFAT) family are thought to regulate the expression of a variety of inducible genes such as interleukin-2 (IL-2), IL-4, and tumor necrosis factor-α. However, it remains unresolved whether NFAT proteins play a role in regulating transcription of the interferon- γ (IFN-γ) gene. Here it is shown that the transcription factor NFAT1 (NFATc2) is a major regulator of IFN-γ production in vivo. Compared with T cells expressing NFAT1, T cells lacking NFAT1 display a substantial IL-4–independent defect in expression of IFN-γ mRNA and protein. Reduced IFN-γ production by NFAT1−/−× IL-4−/− T cells is observed after primary in vitro stimulation of naive CD4+ T cells, is conserved through at least 2 rounds of T-helper cell differentiation, and occurs by a cell-intrinsic mechanism that does not depend on overexpression of the Th2-specific factors GATA-3 and c-Maf. Concomitantly, NFAT1−/−× IL-4−/− mice show increased susceptibility to infection with the intracellular parasiteLeishmania major. Moreover, IFN-γ production in a murine T-cell clone is sensitive to the selective peptide inhibitor of NFAT, VIVIT. These results suggest that IFN-γ production by T cells is regulated by NFAT1, most likely at the level of gene transcription.


1998 ◽  
Vol 66 (5) ◽  
pp. 2107-2114 ◽  
Author(s):  
Yannick Poquet ◽  
Michal Kroca ◽  
Franck Halary ◽  
Stephan Stenmark ◽  
Marie-Alix Peyrat ◽  
...  

ABSTRACT Tularemia is a disease caused by the facultative intracellular bacterium Francisella tularensis. Here we demonstrate that during the first weeks of infection, a significant increase in levels of Vγ9Vδ2 cells occurred in peripheral blood: in 13 patients analyzed 7 to 18 days after the onset of disease, these lymphocytes represented, on average, 30.5% of CD3+ cells and nearly 100% of γδ+ T cells. By contrast, after vaccination with the live vaccine strain (LVS) of F. tularensis, only a minor increase occurred. Eleven days after vaccination, γδ T cells represented an average of 6.7% and Vγ9Vδ2 cells represented an average of 5.3% of T cells, as in control subjects. Since derivatives of nonpeptidic pyrophosphorylated molecules, referred to as phosphoantigens, are powerful stimuli for Vγ9Vδ2 cells, this observation prompted an investigation of phosphoantigens in F. tularensis strains. The F. tularensis phosphoantigens triggered in vitro a proliferative response of human Vγ9Vδ2 peripheral blood leukocytes as well as a cytotoxic response and tumor necrosis factor release from a Vγ9Vδ2 T-cell clone. Quantitatively similar phosphoantigenic activity was detected in acellular extracts from two clinical isolates (FSC171 and Schu) and from LVS. Taken together, the chemical nature of the stimulus from the clinical isolates and the significant increase in levels of Vγ9Vδ2 cells in peripheral blood of tularemia patients indicate that phosphoantigens produced by virulent strains of F. tularensis trigger in vivo expansion of γδ T cells in tularemia.


Diabetes ◽  
1992 ◽  
Vol 41 (12) ◽  
pp. 1603-1608 ◽  
Author(s):  
B. J. Bradley ◽  
K. Haskins ◽  
F. G. La Rosa ◽  
K. J. Lafferty
Keyword(s):  
T Cells ◽  
T Cell ◽  

Sign in / Sign up

Export Citation Format

Share Document