scholarly journals Sex-specific regulation ofLgr3inDrosophilaneurons

2016 ◽  
Vol 113 (9) ◽  
pp. E1256-E1265 ◽  
Author(s):  
Geoffrey W. Meissner ◽  
Shengzhan D. Luo ◽  
Brian G. Dias ◽  
Michael J. Texada ◽  
Bruce S. Baker

The development of sexually dimorphic morphology and the potential for sexually dimorphic behavior inDrosophilaare regulated by the Fruitless (Fru) and Doublesex (Dsx) transcription factors. Several direct targets of Dsx have been identified, but direct Fru targets have not been definitively identified. We show thatDrosophilaleucine-rich repeat G protein-coupled receptor 3 (Lgr3) is regulated by Fru and Dsx in separate populations of neurons.Lgr3is a member of the relaxin-receptor family and a receptor for Dilp8, necessary for control of organ growth.Lgr3expression in the anterior central brain of males is inhibited by the B isoform of Fru, whose DNA binding domain interacts with a short region of anLgr3intron. Fru A and C isoform mutants had no observed effect onLgr3expression. The female form of Dsx (DsxF) separately up- and down-regulatesLgr3expression in distinct neurons in the abdominal ganglion through female- and male-specificLgr3enhancers. Excitation of neural activity in the DsxF–up-regulated abdominal ganglion neurons inhibits female receptivity, indicating the importance of these neurons for sexual behavior. Coordinated regulation ofLgr3by Fru and Dsx marks a point of convergence of the two branches of the sex-determination hierarchy.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Charlotte P Choi ◽  
Rebecca J Tay ◽  
Margaret R Starostik ◽  
Suhua Feng ◽  
James J Moresco ◽  
...  

Piwi-interacting RNAs (piRNAs) play essential roles in silencing repetitive elements to promote fertility in metazoans. Studies in worms, flies, and mammals reveal that piRNAs are expressed in a sex-specific manner. However, the mechanisms underlying this sex-specific regulation are unknown. Here we identify SNPC-1.3, a male germline-enriched variant of a conserved subunit of the small nuclear RNA-activating protein complex, as a male-specific piRNA transcription factor in Caenorhabditis elegans. SNPC-1.3 colocalizes with the core piRNA transcription factor, SNPC-4, in nuclear foci of the male germline. Binding of SNPC-1.3 at male piRNA loci drives spermatogenic piRNA transcription and requires SNPC-4. Loss of snpc-1.3 leads to depletion of male piRNAs and defects in male-dependent fertility. Furthermore, TRA-1, a master regulator of sex determination, binds to the snpc-1.3 promoter and represses its expression during oogenesis. Loss of TRA-1 targeting causes ectopic expression of snpc-1.3 and male piRNAs during oogenesis. Thus, sexually dimorphic regulation of snpc-1.3 expression coordinates male and female piRNA expression during germline development.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Shruti Shankar ◽  
Jia Yi Chua ◽  
Kah Junn Tan ◽  
Meredith EK Calvert ◽  
Ruifen Weng ◽  
...  

Gustatory pheromones play an essential role in shaping the behavior of many organisms. However, little is known about the processing of taste pheromones in higher order brain centers. Here, we describe a male-specific gustatory circuit in Drosophila that underlies the detection of the anti-aphrodisiac pheromone (3R,11Z,19Z)-3-acetoxy-11,19-octacosadien-1-ol (CH503). Using behavioral analysis, genetic manipulation, and live calcium imaging, we show that Gr68a-expressing neurons on the forelegs of male flies exhibit a sexually dimorphic physiological response to the pheromone and relay information to the central brain via peptidergic neurons. The release of tachykinin from 8 to 10 cells within the subesophageal zone is required for the pheromone-triggered courtship suppression. Taken together, this work describes a neuropeptide-modulated central brain circuit that underlies the programmed behavioral response to a gustatory sex pheromone. These results will allow further examination of the molecular basis by which innate behaviors are modulated by gustatory cues and physiological state.


Author(s):  
Gabriele Stephan ◽  
Niklas Ravn-Boess ◽  
Dimitris G Placantonakis

Abstract Members of the adhesion family of G protein-coupled receptors (GPCRs) have received attention for their roles in health and disease, including cancer. Over the past decade, several members of the family have been implicated in the pathogenesis of glioblastoma. Here, we discuss the basic biology of adhesion GPCRs and review in detail specific members of the receptor family with known functions in glioblastoma. Finally, we discuss the potential use of adhesion GPCRs as novel treatment targets in neuro-oncology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Timothy S. Breton ◽  
William G. B. Sampson ◽  
Benjamin Clifford ◽  
Anyssa M. Phaneuf ◽  
Ilze Smidt ◽  
...  

AbstractThe SREB (Super-conserved Receptors Expressed in Brain) family of G protein-coupled receptors is highly conserved across vertebrates and consists of three members: SREB1 (orphan receptor GPR27), SREB2 (GPR85), and SREB3 (GPR173). Ligands for these receptors are largely unknown or only recently identified, and functions for all three are still beginning to be understood, including roles in glucose homeostasis, neurogenesis, and hypothalamic control of reproduction. In addition to the brain, all three are expressed in gonads, but relatively few studies have focused on this, especially in non-mammalian models or in an integrated approach across the entire receptor family. The purpose of this study was to more fully characterize sreb genes in fish, using comparative genomics and gonadal expression analyses in five diverse ray-finned (Actinopterygii) species across evolution. Several unique characteristics were identified in fish, including: (1) a novel, fourth euteleost-specific gene (sreb3b or gpr173b) that likely emerged from a copy of sreb3 in a separate event after the teleost whole genome duplication, (2) sreb3a gene loss in Order Cyprinodontiformes, and (3) expression differences between a gar species and teleosts. Overall, gonadal patterns suggested an important role for all sreb genes in teleost testicular development, while gar were characterized by greater ovarian expression that may reflect similar roles to mammals. The novel sreb3b gene was also characterized by several unique features, including divergent but highly conserved amino acid positions, and elevated brain expression in puffer (Dichotomyctere nigroviridis) that more closely matched sreb2, not sreb3a. These results demonstrate that SREBs may differ among vertebrates in genomic structure and function, and more research is needed to better understand these roles in fish.


1998 ◽  
Vol 95 (12) ◽  
pp. 7157-7162 ◽  
Author(s):  
J. Zhang ◽  
S. S. G. Ferguson ◽  
L. S. Barak ◽  
S. R. Bodduluri ◽  
S. A. Laporte ◽  
...  

2012 ◽  
Vol 44 (3) ◽  
pp. 241-241
Author(s):  
Pamela Feliciano

Development ◽  
1995 ◽  
Vol 121 (10) ◽  
pp. 3245-3258 ◽  
Author(s):  
G.J. Bashaw ◽  
B.S. Baker

In Drosophila dosage compensation increases the rate of transcription of the male's X chromosome and depends on four autosomal male-specific lethal genes. We have cloned the msl-2 gene and shown that MSL-2 protein is co-localized with the other three MSL proteins at hundreds of sites along the male polytene X chromosome and that this binding requires the other three MSL proteins. msl-2 encodes a protein with a putative DNA-binding domain: the RING finger. MSL-2 protein is not produced in females and sequences in both the 5′ and 3′ UTRs are important for this sex-specific regulation. Furthermore, msl-2 pre-mRNA is alternatively spliced in a Sex-lethal-dependent fashion in its 5′ UTR.


1999 ◽  
Vol 22 (2) ◽  
pp. 151-159 ◽  
Author(s):  
L Abdennebi ◽  
L Couture ◽  
D Grebert ◽  
E Pajot ◽  
R Salesse ◽  
...  

Follicle-stimulating hormone (FSH) via interaction with G-protein coupled specific receptors plays a central role in the control of gametogenesis in mammals of both sexes. In females, FSH is crucial for follicle growth, follicle maturation and ovulation. FSH receptors, together with luteinizing hormone-chorionic gonadotropin and thyrotropin receptors belong to a subfamily of structurally related receptors within the seven transmembrane receptor family. Among several other regions, the N-terminus of these receptors is believed to be responsible for important specific hormone-receptor contact sites. Recombinant filamentous phages displaying at their surface three overlapping N-terminal decapeptides of the FSH receptor, peptides A18-27, B25-34 and C29-38 were constructed. Ewes and female mice were immunized against the three FSH receptor (FSHR) recombinant phages. Immunoglobulins purified from immunized animals were analyzed for their biochemical properties on a Chinese hamster ovary cell line expressing the porcine FSH receptor. AntiA and antiB immunoglobulins (IgGs) behave as antagonists for 125I-FSH binding and for FSH-dependent cAMP production, while antiC IgGs did not compete for hormone binding. By contrast, antibodies against the C29-38 peptide displayed FSH agonist activity and stimulated the FSH receptor, whereas antiA and antiB IgGs did not. Furthermore, when the FSHR phages were used as peptidic vaccines, they induced a reversible inhibition of ovulation rate in ewes, and impaired fertility in female mice.


1991 ◽  
Vol 25 (2) ◽  
pp. 137-153 ◽  
Author(s):  
N Sayag ◽  
B Robinzon ◽  
N Snapir ◽  
E Arnon ◽  
V.E Grimm

Sign in / Sign up

Export Citation Format

Share Document