scholarly journals Aberrant H3.3 dynamics in NAc promote vulnerability to depressive-like behavior

2016 ◽  
Vol 113 (44) ◽  
pp. 12562-12567 ◽  
Author(s):  
Ashley E. Lepack ◽  
Rosemary C. Bagot ◽  
Catherine J. Peña ◽  
Yong-Hwee E. Loh ◽  
Lorna A. Farrelly ◽  
...  

Human major depressive disorder (MDD), along with related mood disorders, is among the world’s greatest public health concerns; however, its pathophysiology remains poorly understood. Persistent changes in gene expression are known to promote physiological aberrations implicated in MDD. More recently, histone mechanisms affecting cell type- and regional-specific chromatin structures have also been shown to contribute to transcriptional programs related to depressive behaviors, as well as responses to antidepressants. Although much emphasis has been placed in recent years on roles for histone posttranslational modifications and chromatin-remodeling events in the etiology of MDD, it has become increasingly clear that replication-independent histone variants (e.g., H3.3), which differ in primary amino acid sequence from their canonical counterparts, similarly play critical roles in the regulation of activity-dependent neuronal transcription, synaptic connectivity, and behavioral plasticity. Here, we demonstrate a role for increased H3.3 dynamics in the nucleus accumbens (NAc)—a key limbic brain reward region—in the regulation of aberrant social stress-mediated gene expression and the precipitation of depressive-like behaviors in mice. We find that molecular blockade of these dynamics promotes resilience to chronic social stress and results in a partial renormalization of stress-associated transcriptional patterns in the NAc. In sum, our findings establish H3.3 dynamics as a critical, and previously undocumented, regulator of mood and suggest that future therapies aimed at modulating striatal histone dynamics may potentiate beneficial behavioral adaptations to negative emotional stimuli.

Author(s):  
Karen D. Williams ◽  
Marla B. Sokolowski

Why is there so much variation in insect behavior? This chapter will address the sources of behavioral variability, with a particular focus on phenotypic plasticity. Variation in social, nutritional, and seasonal environmental contexts during development and adulthood can give rise to phenotypic plasticity. To delve into mechanism underlying behavioral flexibility in insects, examples of polyphenisms, a type of phenotypic plasticity, will be discussed. Selected examples reveal that environmental change can affect gene expression, which in turn can affect behavioral plasticity. These changes in gene expression together with gene-by-environment interactions are discussed to illuminate our understanding of insect behavioral plasticity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiao Li ◽  
Jakob Seidlitz ◽  
John Suckling ◽  
Feiyang Fan ◽  
Gong-Jun Ji ◽  
...  

AbstractMajor depressive disorder (MDD) has been shown to be associated with structural abnormalities in a variety of spatially diverse brain regions. However, the correlation between brain structural changes in MDD and gene expression is unclear. Here, we examine the link between brain-wide gene expression and morphometric changes in individuals with MDD, using neuroimaging data from two independent cohorts and a publicly available transcriptomic dataset. Morphometric similarity network (MSN) analysis shows replicable cortical structural differences in individuals with MDD compared to control subjects. Using human brain gene expression data, we observe that the expression of MDD-associated genes spatially correlates with MSN differences. Analysis of cell type-specific signature genes suggests that microglia and neuronal specific transcriptional changes account for most of the observed correlation with MDD-specific MSN differences. Collectively, our findings link molecular and structural changes relevant for MDD.


PLoS ONE ◽  
2017 ◽  
Vol 12 (3) ◽  
pp. e0172692 ◽  
Author(s):  
Chengqing Yang ◽  
Guoqin Hu ◽  
Zezhi Li ◽  
Qingzhong Wang ◽  
Xuemei Wang ◽  
...  

2011 ◽  
Vol 71 ◽  
pp. e114
Author(s):  
Atsumi Mori ◽  
Mamoru Fukuchi ◽  
Yuya Kirikoshi ◽  
Ichiro Takasaki ◽  
Aiko Azegami ◽  
...  

2014 ◽  
Vol 70 (4) ◽  
pp. 220-227 ◽  
Author(s):  
Raoul Belzeaux ◽  
Anderson Loundou ◽  
Jean-Michel Azorin ◽  
Jean Naudin ◽  
El Chérif Ibrahim

Author(s):  
Andreas Menke

Major depressive disorder (MDD) is a common, serious and in some cases life‐threatening condition and affects approximately 350 million people globally (Otte et al., 2016). The magnitude of the clinical burden reflects the limited effectiveness of current available therapies. The current prescribed antidepressants are based on modulating monoaminergic neurotransmission, i.e. they improve central availability of serotonin, norepinephrine and dopamine. However, they are associated with a high rate of partial or non-response, delayed response onset and limited duration. Actually more than 50% of the patients fail to respond to their first antidepressant they receive. Therefore there is a need of new treatment approaches targeting other systems than the monoaminergic pathway. One of the most robust findings in biological psychiatry is a dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis in major depression (Holsboer, 2000). Many studies observed an increased production of the corticotropin-releasing hormone (CRH) in the hypothalamus, leading to an increased release of adrenocorticotropic hormone (ACTH) from the pituitary and subsequently to an enhanced production of cortisol in the adrenal cortex. Due to an impaired sensitivity of the glucocorticoid receptor (GR) the negative feedback mechanisms usually restoring homeostasis after a stress triggered cortisol release are not functioning properly (Holsboer, 2000, Pariante and Miller, 2001). However, treatment strategies targeting the GR or the CRH receptors have not been successful for a general patient population. Selecting the right patients for these treatment alternatives may improve therapy outcome, since a dysregulation of the HPA axis affects only 40-60 % of the depressed patients. Thus, patients with a dysregulated HPA axis have first to be identified and then allocated to a specific treatment regime. Tests like the dexamethasone-suppression-test (DST) or the dex-CRH test have been shown to uncover GR sensitivity deficits, but are not routinely applied in the clinical setting. Recently, the dexamethasone-induced gene expression could uncover GR alterations in participants suffering from major depression and job-related exhaustion (Menke et al., 2012, Menke et al., 2013, Menke et al., 2014, Menke et al., 2016). Actually, by applying the dexamethasone-stimulation test we found a GR hyposensitivity in depressed patients (Menke et al., 2012) and a GR hypersensitivity in subjects with job-related exhaustion (Menke et al., 2014). These alterations normalized after clinical recovery (Menke et al., 2014). Interestingly, the dexamethasone-stimulation test also uncovered FKBP5 genotype dependent alterations in FKBP5 mRNA expression in depressed patients and healthy controls (Menke et al., 2013). FKBP5 is a co-chaperone which modulates the sensitivity of the GR (Binder, 2009). In addition, the dexamethasone-stimulation test provided evidence of common genetic variants that modulate the immediate transcriptional response to GR activation in peripheral human blood cells and increase the risk for depression and co-heritable psychiatric disorders (Arloth et al., 2015). In conclusion, the molecular dexamethasone-stimulation test may thus help to characterize subgroups of subjects suffering from stress-related conditions and in the long-run may be helpful to guide treatment regime as well as prevention strategies.   References: Arloth J, Bogdan R, Weber P, Frishman G, Menke A, Wagner KV, Balsevich G, Schmidt MV, Karbalai N, Czamara D, Altmann A, Trumbach D, Wurst W, Mehta D, Uhr M, Klengel T, Erhardt A, Carey CE, Conley ED, Major Depressive Disorder Working Group of the Psychiatric Genomics C, Ruepp A, Muller-Myhsok B, Hariri AR, Binder EB, Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium PGC (2015) Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders. Neuron 86:1189-1202. Binder EB (2009) The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 34 Suppl 1:S186-195. Holsboer F (2000) The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23:477-501. Menke A, Arloth J, Best J, Namendorf C, Gerlach T, Czamara D, Lucae S, Dunlop BW, Crowe TM, Garlow SJ, Nemeroff CB, Ritchie JC, Craighead WE, Mayberg HS, Rex-Haffner M, Binder EB, Uhr M (2016) Time-dependent effects of dexamethasone plasma concentrations on glucocorticoid receptor challenge tests. Psychoneuroendocrinology 69:161-171. Menke A, Arloth J, Gerber M, Rex-Haffner M, Uhr M, Holsboer F, Binder EB, Holsboer-Trachsler E, Beck J (2014) Dexamethasone stimulated gene expression in peripheral blood indicates glucocorticoid-receptor hypersensitivity in job-related exhaustion. Psychoneuroendocrinology 44:35-46. Menke A, Arloth J, Putz B, Weber P, Klengel T, Mehta D, Gonik M, Rex-Haffner M, Rubel J, Uhr M, Lucae S, Deussing JM, Muller-Myhsok B, Holsboer F, Binder EB (2012) Dexamethasone Stimulated Gene Expression in Peripheral Blood is a Sensitive Marker for Glucocorticoid Receptor Resistance in Depressed Patients. Neuropsychopharmacology 37:1455-1464. Menke A, Klengel T, Rubel J, Bruckl T, Pfister H, Lucae S, Uhr M, Holsboer F, Binder EB (2013) Genetic variation in FKBP5 associated with the extent of stress hormone dysregulation in major depression. Genes Brain Behav  12:289-296. Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, Mohr DC, Schatzberg AF (2016) Major depressive disorder. Nature reviews Disease primers 2:16065. Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biological psychiatry 49:391-404.


2009 ◽  
Vol 37 (2) ◽  
pp. 79-87 ◽  
Author(s):  
Keiko Motoyama ◽  
Yuji Nakai ◽  
Tomoya Miyashita ◽  
Yuichiro Fukui ◽  
Maki Morita ◽  
...  

To elucidate the physiological responses to a social stressor, we exposed mice to an isolation stress and analyzed their hepatic gene expression profiles using a DNA microarray. Male BALB/c mice were exposed to isolation stress for 30 days, and then hepatic RNA was sampled and subjected to DNA microarray analysis. The isolation stress altered the expression of 420 genes (after considering the false discovery rate). Gene Ontology analysis of these differentially expressed genes indicated that the stress remarkably downregulated the lipid metabolism-related pathway through peroxisome proliferator-activated receptor-α, while the lipid biosynthesis pathway controlled by sterol regulatory element binding factor 1, Golgi vesicle transport, and secretory pathway-related genes were significantly upregulated. These results suggest that isolation for 30 days with a mild and consecutive social stress regulates the systems for lipid metabolism and also causes endoplasmic reticulum stress in mouse liver.


Sign in / Sign up

Export Citation Format

Share Document