scholarly journals Agrobacterium-delivered virulence protein VirE2 is trafficked inside host cells via a myosin XI-K–powered ER/actin network

2017 ◽  
Vol 114 (11) ◽  
pp. 2982-2987 ◽  
Author(s):  
Qinghua Yang ◽  
Xiaoyang Li ◽  
Haitao Tu ◽  
Shen Q. Pan

Agrobacterium tumefacienscauses crown gall tumors on various plants by delivering transferred DNA (T-DNA) and virulence proteins into host plant cells. Under laboratory conditions, the bacterium is widely used as a vector to genetically modify a wide range of organisms, including plants, yeasts, fungi, and algae. Various studies suggest that T-DNA is protected inside host cells by VirE2, one of the virulence proteins. However, it is not clear howAgrobacterium-delivered factors are trafficked through the cytoplasm. In this study, we monitored the movement ofAgrobacterium-delivered VirE2 inside plant cells by using a split-GFP approach in real time.Agrobacterium-delivered VirE2 trafficked via the endoplasmic reticulum (ER) and F-actin network inside plant cells. During this process, VirE2 was aggregated as filamentous structures and was present on the cytosolic side of the ER. VirE2 movement was powered by myosin XI-K. Thus, exogenously produced and delivered VirE2 protein can use the endogenous host ER/actin network for movement inside host cells. TheA. tumefacienspathogen hijacks the conserved host infrastructure for virulence trafficking. Well-conserved infrastructure may be useful forAgrobacteriumto target a wide range of recipient cells and achieve a high efficiency of transformation.

2017 ◽  
Vol 114 (38) ◽  
pp. 10238-10243 ◽  
Author(s):  
Xiaorong Zhang ◽  
G. Paul H. van Heusden ◽  
Paul J. J. Hooykaas

The bacteriumAgrobacterium tumefacienscauses crown gall tumor formation in plants. During infection the bacteria translocate an oncogenic piece of DNA (transferred DNA, T-DNA) into plant cells at the infection site. A number of virulence proteins are cotransported into host cells concomitantly with the T-DNA to effectuate transformation. Using yeast as a model host, we find that one of these proteins, VirD5, localizes to the centromeres/kinetochores in the nucleus of the host cells by its interaction with the conserved protein Spt4. VirD5 promotes chromosomal instability as seen by the high-frequency loss of a minichromosome in yeast. By using both yeast and plant cells with a chromosome that was specifically marked by alacOrepeat, chromosome segregation errors and the appearance of aneuploid cells due to the presence of VirD5 could be visualized in vivo. Thus, VirD5 is a prokaryotic virulence protein that interferes with mitosis.


2019 ◽  
Author(s):  
Michael Oschmann ◽  
Linus Johansson Holm ◽  
Oscar Verho

Benzofurans are everywhere in nature and they have been extensively studied by medicinal chemists over the years because of their chemotherapeutic and physiological properties. Herein, we describe a strategy that can be used to access elaborate benzo-2-carboxamide derivatives, which involves a synthetic sequence of 8-aminoquinoline directed C–H arylations followed by transamidations. For the directed C–H arylations, Pd catalysis was used to install a wide range of aryl and heteroaryl substituents at the C3 position of the benzofuran scaffold in high efficiency. Directing group cleavage and further diversification of the C3-arylated benzofuran products were then achieved in a single synthetic operation through the utilization of a two-step transamidation protocol. By bocylating the 8-aminoquinoline amide moiety of these products, it proved possible to activate them towards aminolysis with different amine nucleophiles. Interestingly, this aminolysis reaction was found to proceed efficiently without the need of any additional catalyst or additive. Given the high efficiency and modularity of this synthetic strategy, it constitute a very attractive approach for generating structurally-diverse collections of benzofuran derivatives for small molecule screening.


Author(s):  
S.V. Borshch ◽  
◽  
R.M. Vil’fand ◽  
D.B. Kiktev ◽  
V.M. Khan ◽  
...  

The paper presents the summary and results of long-term and multi-faceted experience of international scientific and technical cooperation of Hydrometeorological Center of Russia in the field of hydrometeorology and environmental monitoring within the framework of WMO programs, which indicates its high efficiency in performing a wide range of works at a high scientific and technical level. Keywords: World Meteorological Organization, major WMO programs, representatives of Hydrometeorological Center of Russia in WMO


Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


2021 ◽  
Vol 11 (14) ◽  
pp. 6549
Author(s):  
Hui Liu ◽  
Ming Zeng ◽  
Xiang Niu ◽  
Hongyan Huang ◽  
Daren Yu

The microthruster is the crucial device of the drag-free attitude control system, essential for the space-borne gravitational wave detection mission. The cusped field thruster (also called the High Efficiency Multistage Plasma Thruster) becomes one of the candidate thrusters for the mission due to its low complexity and potential long life over a wide range of thrust. However, the prescribed minimum of thrust and thrust noise are considerable obstacles to downscaling works on cusped field thrusters. This article reviews the development of the low power cusped field thruster at the Harbin Institute of Technology since 2012, including the design of prototypes, experimental investigations and simulation studies. Progress has been made on the downscaling of cusped field thrusters, and a new concept of microwave discharge cusped field thruster has been introduced.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amelia E. Sancilio ◽  
Richard T. D’Aquila ◽  
Elizabeth M. McNally ◽  
Matthew P. Velez ◽  
Michael G. Ison ◽  
...  

AbstractThe spike protein of SARS-CoV-2 engages the human angiotensin-converting enzyme 2 (ACE2) receptor to enter host cells, and neutralizing antibodies are effective at blocking this interaction to prevent infection. Widespread application of this important marker of protective immunity is limited by logistical and technical challenges associated with live virus methods and venous blood collection. To address this gap, we validated an immunoassay-based method for quantifying neutralization of the spike-ACE2 interaction in a single drop of capillary whole blood, collected on filter paper as a dried blood spot (DBS) sample. Samples are eluted overnight and incubated in the presence of spike antigen and ACE2 in a 96-well solid phase plate. Competitive immunoassay with electrochemiluminescent label is used to quantify neutralizing activity. The following measures of assay performance were evaluated: dilution series of confirmed positive and negative samples, agreement with results from matched DBS-serum samples, analysis of results from DBS samples with known COVID-19 status, and precision (intra-assay percent coefficient of variation; %CV) and reliability (inter-assay; %CV). Dilution series produced the expected pattern of dose–response. Agreement between results from serum and DBS samples was high, with concordance correlation = 0.991. Analysis of three control samples across the measurement range indicated acceptable levels of precision and reliability. Median % surrogate neutralization was 46.9 for PCR confirmed convalescent COVID-19 samples and 0.1 for negative samples. Large-scale testing is important for quantifying neutralizing antibodies that can provide protection against COVID-19 in order to estimate the level of immunity in the general population. DBS provides a minimally-invasive, low cost alternative to venous blood collection, and this scalable immunoassay-based method for quantifying inhibition of the spike-ACE2 interaction can be used as a surrogate for virus-based assays to expand testing across a wide range of settings and populations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexander D. Taylor ◽  
Qing Sun ◽  
Katelyn P. Goetz ◽  
Qingzhi An ◽  
Tim Schramm ◽  
...  

AbstractDeposition of perovskite films by antisolvent engineering is a highly common method employed in perovskite photovoltaics research. Herein, we report on a general method that allows for the fabrication of highly efficient perovskite solar cells by any antisolvent via manipulation of the antisolvent application rate. Through detailed structural, compositional, and microstructural characterization of perovskite layers fabricated by 14 different antisolvents, we identify two key factors that influence the quality of the perovskite layer: the solubility of the organic precursors in the antisolvent and its miscibility with the host solvent(s) of the perovskite precursor solution, which combine to produce rate-dependent behavior during the antisolvent application step. Leveraging this, we produce devices with power conversion efficiencies (PCEs) that exceed 21% using a wide range of antisolvents. Moreover, we demonstrate that employing the optimal antisolvent application procedure allows for highly efficient solar cells to be fabricated from a broad range of precursor stoichiometries.


Sign in / Sign up

Export Citation Format

Share Document