scholarly journals Identification of a putative binding site critical for general anesthetic activation of TRPA1

2017 ◽  
Vol 114 (14) ◽  
pp. 3762-3767 ◽  
Author(s):  
Hoai T. Ton ◽  
Thieu X. Phan ◽  
Ara M. Abramyan ◽  
Lei Shi ◽  
Gerard P. Ahern

General anesthetics suppress CNS activity by modulating the function of membrane ion channels, in particular, by enhancing activity of GABAA receptors. In contrast, several volatile (isoflurane, desflurane) and i.v. (propofol) general anesthetics excite peripheral sensory nerves to cause pain and irritation upon administration. These noxious anesthetics activate transient receptor potential ankyrin repeat 1 (TRPA1), a major nociceptive ion channel, but the underlying mechanisms and site of action are unknown. Here we exploit the observation that pungent anesthetics activate mammalian but not Drosophila TRPA1. Analysis of chimeric Drosophila and mouse TRPA1 channels reveal a critical role for the fifth transmembrane domain (S5) in sensing anesthetics. Interestingly, we show that anesthetics share with the antagonist A-967079 a potential binding pocket lined by residues in the S5, S6, and the first pore helix; isoflurane competitively disrupts A-967079 antagonism, and introducing these mammalian TRPA1 residues into dTRPA1 recapitulates anesthetic agonism. Furthermore, molecular modeling predicts that isoflurane and propofol bind to this pocket by forming H-bond and halogen-bond interactions with Ser-876, Met-915, and Met-956. Mutagenizing Met-915 or Met-956 selectively abolishes activation by isoflurane and propofol without affecting actions of A-967079 or the agonist, menthol. Thus, our combined experimental and computational results reveal the potential binding mode of noxious general anesthetics at TRPA1. These data may provide a structural basis for designing drugs to counter the noxious and vasorelaxant properties of general anesthetics and may prove useful in understanding effects of anesthetics on related ion channels.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 668
Author(s):  
Concetta Altamura ◽  
Maria Raffaella Greco ◽  
Maria Rosaria Carratù ◽  
Rosa Angela Cardone ◽  
Jean-François Desaphy

Ovarian cancer (OC) is the deadliest gynecologic cancer, due to late diagnosis, development of platinum resistance, and inadequate alternative therapy. It has been demonstrated that membrane ion channels play important roles in cancer processes, including cell proliferation, apoptosis, motility, and invasion. Here, we review the contribution of ion channels in the development and progression of OC, evaluating their potential in clinical management. Increased expression of voltage-gated and epithelial sodium channels has been detected in OC cells and tissues and shown to be involved in cancer proliferation and invasion. Potassium and calcium channels have been found to play a critical role in the control of cell cycle and in the resistance to apoptosis, promoting tumor growth and recurrence. Overexpression of chloride and transient receptor potential channels was found both in vitro and in vivo, supporting their contribution to OC. Furthermore, ion channels have been shown to influence the sensitivity of OC cells to neoplastic drugs, suggesting a critical role in chemotherapy resistance. The study of ion channels expression and function in OC can improve our understanding of pathophysiology and pave the way for identifying ion channels as potential targets for tumor diagnosis and treatment.


2010 ◽  
Vol 13 (2) ◽  
pp. 242 ◽  
Author(s):  
Muhammad Azhar Sherkheli ◽  
Angela K. Vogt-Eisele ◽  
Daniel Bura ◽  
Leopoldo R. Beltrán Márques ◽  
Günter Gisselmann ◽  
...  

PURPOSE: Transient receptor potential melastatin-8 (TRPM8) is an ion channel expressed extensively in sensory nerves, human prostate and overexpressed in a variety of cancers including prostate, breast, lung, colon and skin melanomas. It is activated by innoxious cooling and chemical stimuli. TRPM8 activation by cooling or chemical agonists is reported to induce profound analgesia in neuropathic pain conditions. Known TRPM8 agonists like menthol and icilin cross-activate other thermo-TRP channels like TRPV3 and TRPA1 and mutually inhibit TRPM8. This limits the usefulness of menthol and icilin as TRPM8 ligands. Consequently, the identification of selective and potent ligands for TRPM8 is of high relevance both in basic research and for therapeutic applications. In the present investigation, a group of menthol derivates was characterized. These ligands are selective and potent agonists of TRPM8. Interestingly they do not activate other thermo-TRPs like TRPA1, TRPV1, TRPV2, TRPV3 and TRPV4. These ion channels are also nociceptors and target of many inflammatory mediators. METHODS: Investigations were performed in a recombinant system: Xenopus oocytes microinjected with cRNA of gene of interest were superfused with the test substances after initial responses of known standard agonists. Evoked currents were measured by two-electrode voltage clamp technique. RESULTS: The newly characterized ligands possess an up to six-fold higher potency (EC50 in low µM) and an up to two-fold increase in efficacy compared to the parent compound menthol. In addition, it is found that chemical derivatives of menthol like CPS-368, CPS-369, CPS-125, WS-5 and WS-12 are the most selective ligands for TRPM8. The enhanced activity and selectivity seems to be conferred by hexacyclic ring structure present in all ligands as substances like WS-23 which lack this functional group activate TRPM8 with much lower potency (EC50 in mM) and those with pentacyclcic ring structure (furanone compounds) are totally inactive. CONCLUSION: The new substances activate TRPM8 with a higher potency, efficacy and specificity than menthol and will thus be of importance for the development of pharmacological agents suitable for treatment and diagnosis of certain cancers and as analgesics. STATEMENT OF NOVELTY: The new compounds have an unmatched specificity for TRPM8 ion channels with additional display of high potency and efficacy. Thus these substances are better pharmacological tools for TRPM8 characterization then known compounds and it is suggested that these menthol-derivates may serve as model substances for the development of TRPM8 ligands.


2019 ◽  
Author(s):  
Sruthi Murlidaran ◽  
Jérôme Hénin ◽  
Grace Brannigan

AbstractGABA(A) receptors are pentameric ligand-gated ion channels playing a critical role in the modulation of neuronal excitability. These inhibitory receptors, gated by γ-aminobutyric acid (GABA), can be potentiated and even directly activated by intravenous and inhalational anesthetics. Intersubunit cavities in the transmembrane domain have been consistently identified as putative binding sites by numerous experiment and simulation results. Synaptic GABA(A) receptors are predominantly found in a 2α:2β:1γ stoichiometry, with four unique inter-subunit interfaces. Experimental and computational results have suggested a perplexing specificity, given that cavity-lining residues are highly conserved, and the functional effects of general anesthetics are only weakly sensitive to most mutations of cavity residues. Here we use Molecular Dynamics simulations and thermodynamically rigorous alchemical free energy perturbation (AFEP) techniques to calculate affinities of the intravenous anesthetic propofol and the inhaled anesthetic sevoflurane to all intersubunit sites in a heteromeric GABA(A) receptor. We find that the best predictor of general anesthetic affinity for the intersubunit cavity sites is water displacement: combinations of anesthetic and binding site that displace more water molecules have higher affinities than those that displace fewer. The amount of water displacement is, in turn, a function of size of the general anesthetic, successful competition of the general anesthetic with water for the few hydrogen bonding partners in the site, and inaccessibility of the site to lipid acyl chains. The latter explains the surprisingly low affinity of GAs for the γ − α intersubunit site, which is missing a bulky methionine residue at the cavity entrance and can be occupied by acyl chains in the unbound state. Simulations also identify sevoflurane binding sites in the β subunit centers and in the pore, but predict that these are lower affinity than the intersubunit sites.SignificanceAfter over a century of research, it is established that general anesthetics interact directly with hydrophobic cavities in proteins. We still do not know why not all small hydrophobic molecules can act as general anesthetics, or why not all hydrophobic cavities bind these molecules. General anesthetics can even select among homologous sites on one critical target, the GABA(A) heteropentamer, although the origins of selectivity are unknown. Here we used rigorous free energy calculations to find that binding affinity correlates with the number of released water molecules, which in turn depends upon the lipid content of the cavity without bound anesthetic. Results suggest a mechanism that reconciles lipid-centered and protein-centered theories, and which can directly inform design of new anesthetics.


2011 ◽  
Vol 115 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Tao Luo ◽  
L. Stan Leung

Background The brain histaminergic system plays a critical role in maintenance of arousal. Previous studies suggest that histaminergic neurotransmission might be a potential mediator of general anesthetic actions. However, it is not clear whether histaminergic tuberomamillary nucleus (TMN) is necessarily involved in the sedative/hypnotic effects of general anesthetics. Methods Male Long Evans rats underwent either TMN orexin-saporin/sham lesion or implantation of intracerebroventricular cannula 2 weeks before the experiment. The behavioral endpoint of loss of righting reflex was used to assess the hypnotic property of isoflurane, propofol, pentobarbital, and ketamine in animals. Histaminergic cell loss was assessed by adenosine deaminase expression in the TMN using immunohistochemistry. Results Rats with bilateral TMN orexin-saporin lesion induced an average 72% loss of histaminergic cells compared with sham-lesion rats. TMN orexin-saporin lesion or intracerebroventricular administration of triprolidine (an H1 receptor antagonist) decreased the 50% effective concentration for loss of righting reflex value and prolonged emergence time to isoflurane anesthesia. However, TMN orexin-saporin lesion had no significant effect on the anesthetic sensitivity to propofol, pentobarbital, and ketamine. Conclusions These findings suggest a role of the TMN histaminergic neurons in modulating isoflurane anesthesia and that the neural circuits for isoflurane-induced hypnosis may differ from those of γ-aminobutyric acid-mediated anesthetics and ketamine.


Cell Reports ◽  
2018 ◽  
Vol 23 (4) ◽  
pp. 993-1004 ◽  
Author(s):  
Zaineb Fourati ◽  
Rebecca J. Howard ◽  
Stephanie A. Heusser ◽  
Haidai Hu ◽  
Reinis R. Ruza ◽  
...  

2021 ◽  
Author(s):  
Jamie Vandenberg ◽  
Carus Lau ◽  
Emelie Flood ◽  
Mark Hunter ◽  
Chai-Ann Ng ◽  
...  

Abstract The exquisite fine tuning of biological electrical signalling is mediated by variations in the rates of opening and closing of different ion channels(1). In addition to open and closed conformations, ion channels can exist in an inactivated state, which prevents conduction in the presence of a prolonged activating stimulus(2). Human ether-a-go-go related gene (HERG) K+ channels undergo uniquely rapid and voltage dependent inactivation(3-5), which confers upon them a critical role in protecting against cardiac arrhythmias and sudden death(6). Previous structural studies have captured only the open state of the HERG channel(7,8). Here, we have exploited the K+ sensitivity of HERG inactivation to determine structures of both the conductive state and the elusive inactivated state of HERG. We show that hERG inactivation is facilitated by two competing networks of hydrogen bonds behind the selectivity filter that enable rapid and voltage dependent flipping of the valine carbonyls in the centre of the selectivity filter. Our data also explains how changes in extracellular K+ affects the distribution between conductive and inactivated states(9,10) and thereby explains why hypokalaemia reduces HERG channel activity thereby increasing the risk of cardiac arrhythmias(11).


2019 ◽  
Vol 476 (21) ◽  
pp. 3227-3240 ◽  
Author(s):  
Shanshan Wang ◽  
Yanxiang Zhao ◽  
Long Yi ◽  
Minghe Shen ◽  
Chao Wang ◽  
...  

Trehalose-6-phosphate (T6P) synthase (Tps1) catalyzes the formation of T6P from UDP-glucose (UDPG) (or GDPG, etc.) and glucose-6-phosphate (G6P), and structural basis of this process has not been well studied. MoTps1 (Magnaporthe oryzae Tps1) plays a critical role in carbon and nitrogen metabolism, but its structural information is unknown. Here we present the crystal structures of MoTps1 apo, binary (with UDPG) and ternary (with UDPG/G6P or UDP/T6P) complexes. MoTps1 consists of two modified Rossmann-fold domains and a catalytic center in-between. Unlike Escherichia coli OtsA (EcOtsA, the Tps1 of E. coli), MoTps1 exists as a mixture of monomer, dimer, and oligomer in solution. Inter-chain salt bridges, which are not fully conserved in EcOtsA, play primary roles in MoTps1 oligomerization. Binding of UDPG by MoTps1 C-terminal domain modifies the substrate pocket of MoTps1. In the MoTps1 ternary complex structure, UDP and T6P, the products of UDPG and G6P, are detected, and substantial conformational rearrangements of N-terminal domain, including structural reshuffling (β3–β4 loop to α0 helix) and movement of a ‘shift region' towards the catalytic centre, are observed. These conformational changes render MoTps1 to a ‘closed' state compared with its ‘open' state in apo or UDPG complex structures. By solving the EcOtsA apo structure, we confirmed that similar ligand binding induced conformational changes also exist in EcOtsA, although no structural reshuffling involved. Based on our research and previous studies, we present a model for the catalytic process of Tps1. Our research provides novel information on MoTps1, Tps1 family, and structure-based antifungal drug design.


Sign in / Sign up

Export Citation Format

Share Document