scholarly journals Characterization Of Selective TRPM8 Ligands And Their Structure Activity Response (S.A.R) Relationship

2010 ◽  
Vol 13 (2) ◽  
pp. 242 ◽  
Author(s):  
Muhammad Azhar Sherkheli ◽  
Angela K. Vogt-Eisele ◽  
Daniel Bura ◽  
Leopoldo R. Beltrán Márques ◽  
Günter Gisselmann ◽  
...  

PURPOSE: Transient receptor potential melastatin-8 (TRPM8) is an ion channel expressed extensively in sensory nerves, human prostate and overexpressed in a variety of cancers including prostate, breast, lung, colon and skin melanomas. It is activated by innoxious cooling and chemical stimuli. TRPM8 activation by cooling or chemical agonists is reported to induce profound analgesia in neuropathic pain conditions. Known TRPM8 agonists like menthol and icilin cross-activate other thermo-TRP channels like TRPV3 and TRPA1 and mutually inhibit TRPM8. This limits the usefulness of menthol and icilin as TRPM8 ligands. Consequently, the identification of selective and potent ligands for TRPM8 is of high relevance both in basic research and for therapeutic applications. In the present investigation, a group of menthol derivates was characterized. These ligands are selective and potent agonists of TRPM8. Interestingly they do not activate other thermo-TRPs like TRPA1, TRPV1, TRPV2, TRPV3 and TRPV4. These ion channels are also nociceptors and target of many inflammatory mediators. METHODS: Investigations were performed in a recombinant system: Xenopus oocytes microinjected with cRNA of gene of interest were superfused with the test substances after initial responses of known standard agonists. Evoked currents were measured by two-electrode voltage clamp technique. RESULTS: The newly characterized ligands possess an up to six-fold higher potency (EC50 in low µM) and an up to two-fold increase in efficacy compared to the parent compound menthol. In addition, it is found that chemical derivatives of menthol like CPS-368, CPS-369, CPS-125, WS-5 and WS-12 are the most selective ligands for TRPM8. The enhanced activity and selectivity seems to be conferred by hexacyclic ring structure present in all ligands as substances like WS-23 which lack this functional group activate TRPM8 with much lower potency (EC50 in mM) and those with pentacyclcic ring structure (furanone compounds) are totally inactive. CONCLUSION: The new substances activate TRPM8 with a higher potency, efficacy and specificity than menthol and will thus be of importance for the development of pharmacological agents suitable for treatment and diagnosis of certain cancers and as analgesics. STATEMENT OF NOVELTY: The new compounds have an unmatched specificity for TRPM8 ion channels with additional display of high potency and efficacy. Thus these substances are better pharmacological tools for TRPM8 characterization then known compounds and it is suggested that these menthol-derivates may serve as model substances for the development of TRPM8 ligands.

2012 ◽  
Vol 287 (44) ◽  
pp. 36663-36672 ◽  
Author(s):  
Julia Frühwald ◽  
Julia Camacho Londoño ◽  
Sandeep Dembla ◽  
Stefanie Mannebach ◽  
Annette Lis ◽  
...  

2021 ◽  
Author(s):  
Nupur S. Munjal ◽  
Dikscha Sapra ◽  
Abhishek Goyal ◽  
K.T. Shreya Parthasarathi ◽  
Akhilesh Pandey ◽  
...  

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the worldwide COVID-19 pandemic which began in 2019. It has a high transmission rate and pathogenicity leading to health emergencies and economic crisis. Recent studies pertaining to the understanding of the molecular pathogenesis of SARS-CoV-2 infection exhibited the indispensable role of ion channels in viral infection inside the host. Moreover, machine learning-based algorithms are providing higher accuracy for host-SARS-CoV-2 protein-protein interactions (PPIs). In this study, predictions of PPIs of SARS-CoV-2 proteins with human ion channels (HICs) were performed using PPI-MetaGO algorithm. The PPIs were predicted with 82.71% accuracy, 84.09% precision, 84.09% sensitivity, 0.89 AUC-ROC, 65.17% MCC score and 84.09% F1 score. Thereafter, PPI networks of SARS-CoV-2 proteins with HICs were generated. Furthermore, biological pathway analysis of HICs interacting with SARS-CoV-2 proteins showed the involvement of six pathways, namely inflammatory mediator regulation of TRP channels, insulin secretion, renin secretion, gap junction, taste transduction and apelin signaling pathway. The inositol 1,4,5-trisphosphate receptor 1 (ITPR1) and transient receptor potential cation channel subfamily A member 1 (TRPA1) were identified as potential target proteins. Various FDA approved drugs interacting with ITPR1 and TRPA1 are also available. It is anticipated that targeting ITPR1 and TRPA1 may provide a better therapeutic management of infection caused by SARS-CoV-2. The study also reinforces the drug repurposing approach for the development of host directed antiviral drugs.


2007 ◽  
Vol 292 (1) ◽  
pp. R64-R76 ◽  
Author(s):  
Michael J. Caterina

Living organisms must evaluate changes in environmental and internal temperatures to mount appropriate physiological and behavioral responses conducive to survival. Classical physiology has provided a wealth of information regarding the specialization of thermosensory functions among subclasses of peripheral sensory neurons and intrinsically thermosensitive neurons within the hypothalamus. However, until recently, the molecular mechanisms by which these cells carry out thermometry have remained poorly understood. The demonstration that certain ion channels of the transient receptor potential (TRP) family can be activated by increases or decreases in ambient temperature, along with the recognition of their heterogeneous expression patterns and heterogeneous temperature sensitivities, has led investigators to evaluate these proteins as candidate endogenous thermosensors. Much of this work has involved one specific channel, TRP vanilloid 1 (TRPV1), which is both a receptor for capsaicin and related pungent vanilloid compounds and a “heat receptor,” capable of directly depolarizing neurons in response to temperatures >42°C. Evidence for a contribution of TRPV1 to peripheral thermosensation has come from pharmacological, physiological, and genetic approaches. In contrast, although capsaicin-sensitive mechanisms clearly influence core body temperature regulation, the specific contribution of TRPV1 to this process remains a matter of debate. Besides TRPV1, at least six additional thermally sensitive TRP channels have been identified in mammals, and many of these also appear to participate in thermosensation. Moreover, the identification of invertebrate TRP channels, whose genetic ablation alters thermally driven behaviors, makes it clear that thermosensation represents an evolutionarily conserved role of this ion channel family.


2021 ◽  
Vol 65 (s1) ◽  
Author(s):  
Proshanta Roy ◽  
Ilenia Martinelli ◽  
Michele Moruzzi ◽  
Federica Maggi ◽  
Consuelo Amantini ◽  
...  

Evidence suggests that transient receptor potential (TRP) ion channels dysfunction significantly contributes to the physiopathology of metabolic and neurological disorders. Dysregulation in functions and expression in genes encoding the TRP channels cause several inherited diseases in humans (the so-called ‘TRP channelopathies’), which affect the cardiovascular, renal, skeletal, and nervous systems. This study aimed to evaluate the expression of ion channels in the forebrain of rats with diet-induced obesity (DIO). DIO rats were studied after 17 weeks under a hypercaloric diet (high-fat diet, HFD) and were compared to the control rats with a standard diet (CHOW). To determine the systemic effects of HFD exposure, we examined food intake, fat mass content, fasting glycemia, insulin levels, cholesterol, and triglycerides. qRT-PCR, Western blot, and immunochemistry analysis were performed in the frontal cortex (FC) and hippocampus (HIP). After 17 weeks of HFD, DIO rats increased their body weight significantly compared to the CHOW rats. In DIO rats, TRPC1 and TRPC6 were upregulated in the HIP, while they were downregulated in the FC. In the case of TRPM2 expression, instead was increased both in the HIP and in the FC. These could be related to the increase of proteins and nucleic acid oxidation. TRPV1 and TRPV2 gene expression showed no differences both in the FC and HIP. In general, qRT-PCR analyses were confirmed by Western blot analysis. Immunohistochemical procedures highlighted the expression of the channels in the cell body of neurons and axons, particularly for the TRPC1 and TRPC6. The alterations of TRP channel expression could be related to the activation of glial cells or the neurodegenerative process presented in the brain of the DIO rat highlighted with post synaptic protein (PSD 95) alterations. The availability of suitable animal models may be useful for studying possible pharmacological treatments to counter obesity-induced brain injury. The identified changes in DIO rats may represent the first insight to characterize the neuronal alterations occurring in obesity. Further investigations are necessary to characterize the role of TRP channels in the regulation of synaptic plasticity and obesity-related cognitive decline.


2021 ◽  
Author(s):  
Nupur S. Munjal ◽  
Dikscha Sapra ◽  
Abhishek Goyal ◽  
K.T. Shreya Parthasarathi ◽  
Akhilesh Pandey ◽  
...  

Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the worldwide COVID-19 pandemic which began in 2019. It has a high transmission rate and pathogenicity leading to health emergencies and economic crisis. Recent studies pertaining to the understanding of the molecular pathogenesis of SARS-CoV-2 infection exhibited the indispensable role of ion channels in viral infection inside the host. Moreover, machine learning (ML)-based algorithms are providing higher accuracy for host-SARS-CoV-2 protein-protein interactions (PPIs). In this study, predictions of PPIs of SARS-CoV-2 proteins with human ion channels (HICs) were performed using PPI-MetaGO algorithm. The PPIs were predicted with 82.71% accuracy, 84.09% precision, 84.09% sensitivity, 0.89 AUC-ROC, 65.17% Matthews correlation coefficient (MCC) score and 84.09% F1 score. Thereafter, PPI networks of SARSCoV-2 proteins with HICs were generated. Furthermore, biological pathway analysis of HICs interacting with SARS-CoV-2 proteins showed the involvement of six pathways, namely inflammatory mediator regulation of transient receptor potential (TRP) channels, insulin secretion, renin secretion, gap junction, taste transduction and apelin signaling pathway. Our analysis suggests that transient receptor potential cation channel subfamily M member 4 (TRPM4), transient receptor potential cation channel subfamily A member 1 (TRPA1), gap junction protein alpha 1 (GJA1), potassium calcium-activated channel subfamily N member 4 (KCNN4), acid sensing ion channel subunit 1 (ASIC1) and inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) could serve as an initial set to the experimentalists for further validation. Additionally, various US food and drug administration (FDA) approved drugs interacting with the potential HICs were also identified. The study also reinforcesthe drug repurposing approach for the development of host directed antiviral drugs.


2018 ◽  
Vol 115 (10) ◽  
pp. 2377-2382 ◽  
Author(s):  
Jingjing Duan ◽  
Zongli Li ◽  
Jian Li ◽  
Ana Santa-Cruz ◽  
Silvia Sanchez-Martinez ◽  
...  

Transient receptor potential melastatin subfamily member 4 (TRPM4) is a widely distributed, calcium-activated, monovalent-selective cation channel. Mutations in human TRPM4 (hTRPM4) result in progressive familial heart block. Here, we report the electron cryomicroscopy structure of hTRPM4 in a closed, Na+-bound, apo state at pH 7.5 to an overall resolution of 3.7 Å. Five partially hydrated sodium ions are proposed to occupy the center of the conduction pore and the entrance to the coiled-coil domain. We identify an upper gate in the selectivity filter and a lower gate at the entrance to the cytoplasmic coiled-coil domain. Intramolecular interactions exist between the TRP domain and the S4–S5 linker, N-terminal domain, and N and C termini. Finally, we identify aromatic interactions via π–π bonds and cation–π bonds, glycosylation at an N-linked extracellular site, a pore-loop disulfide bond, and 24 lipid binding sites. We compare and contrast this structure with other TRP channels and discuss potential mechanisms of regulation and gating of human full-length TRPM4.


Sign in / Sign up

Export Citation Format

Share Document