scholarly journals Combined HMG-COA reductase and prenylation inhibition in treatment of CCM

2017 ◽  
Vol 114 (21) ◽  
pp. 5503-5508 ◽  
Author(s):  
Sayoko Nishimura ◽  
Ketu Mishra-Gorur ◽  
JinSeok Park ◽  
Yulia V. Surovtseva ◽  
Said M. Sebti ◽  
...  

Cerebral cavernous malformations (CCMs) are common vascular anomalies that develop in the central nervous system and, more rarely, the retina. The lesions can cause headache, seizures, focal neurological deficits, and hemorrhagic stroke. Symptomatic lesions are treated according to their presentation; however, targeted pharmacological therapies that improve the outcome of CCM disease are currently lacking. We performed a high-throughput screen to identify Food and Drug Administration-approved drugs or other bioactive compounds that could effectively suppress hyperproliferation of mouse brain primary astrocytes deficient for CCM3. We demonstrate that fluvastatin, an inhibitor of 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase and the N-bisphosphonate zoledronic acid monohydrate, an inhibitor of protein prenylation, act synergistically to reverse outcomes of CCM3 loss in cultured mouse primary astrocytes and in Drosophila glial cells in vivo. Further, the two drugs effectively attenuate neural and vascular deficits in chronic and acute mouse models of CCM3 loss in vivo, significantly reducing lesion burden and extending longevity. Sustained inhibition of the mevalonate pathway represents a potential pharmacological treatment option and suggests advantages of combination therapy for CCM disease.

1995 ◽  
Vol 15 (7) ◽  
pp. 872-878 ◽  
Author(s):  
Thomas M. Stulnig ◽  
Helmut Klocker ◽  
H. James Harwood ◽  
Günther Jürgens ◽  
Dieter Schönitzer ◽  
...  

Blood ◽  
2003 ◽  
Vol 102 (9) ◽  
pp. 3354-3362 ◽  
Author(s):  
Niels W. C. J. van de Donk ◽  
Marloes M. J. Kamphuis ◽  
Berris van Kessel ◽  
Henk M. Lokhorst ◽  
Andries C. Bloem

AbstractHMG-CoA reductase is the rate-limiting enzyme of the mevalonate pathway leading to the formation of cholesterol and isoprenoids such as farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP). The inhibition of HMG-CoA reductase by lovastatin induced apoptosis in plasma cell lines and tumor cells from patients with multiple myeloma. Here we show that cotreatment with mevalonate or geranylgeranyl moieties, but not farnesyl groups, rescued myeloma cells from lovastatin-induced apoptosis. In addition, the inhibition of geranylgeranylation by specific inhibition of geranylgeranyl transferase I (GGTase I) induced the apoptosis of myeloma cells. Apoptosis triggered by the inhibition of geranylgeranylation was associated with reduction of Mcl-1 protein expression, collapse of the mitochondrial transmembrane potential, expression of the mitochondrial membrane protein 7A6, cytochrome c release from mitochondria into the cytosol, and stimulation of caspase-3 activity. These results imply that protein geranylgeranylation is critical for regulating myeloma tumor cell survival, possibly through regulating Mcl-1 expression. Our results show that pharmacologic agents such as lovastatin or GGTase inhibitors may be useful in the treatment of multiple myeloma.


1999 ◽  
Vol 276 (2) ◽  
pp. G407-G414 ◽  
Author(s):  
Monika Zoltowska ◽  
Edgard E. Delvin ◽  
Khazal Paradis ◽  
Ernest Seidman ◽  
Emile Levy

Immortalized bile duct cells (BDC), derived from transgenic mice harboring the SV40 thermosensitive immortalizing mutant gene ts458, were utilized to investigate the role of the biliary epithelium in lipid and sterol metabolism. This cell model closely resembles the in vivo situation because it expresses the specific phenotypic marker cytokeratin 19 (CK-19), exhibits the formation of bile duct-like structures, and displays well-formed microvilli projected from the apical side to central lumen. The BDC were found to incorporate [14C]oleic acid (in nmol/mg protein) into triglycerides (121 ± 6), phospholipids (PL; 59 ± 3), and cholesteryl ester (16 ± 1). The medium lipid content represented 5.90 ± 0.16% ( P < 0.005) of the total intracellular production, indicating a limited lipid export capacity. Analysis of PL composition demonstrated the synthesis of all classes of polar lipids, with phosphatidylcholine and phosphatidylethanolamine accounting for 60 ± 1 and 24 ± 1%, respectively, of the total. Differences in PL distribution were apparent between cells and media. Substantial cholesterol synthesis was observed in BDC, as determined by the incorporation of [14C]acetate suggesting the presence of hydroxymethylglutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme in the cholesterol biosynthetic pathway. With the use of [14C]acetate and [14C]cholesterol as precursors, both tauro- and glycoconjugates of bile acids were synthesized, indicating the presence of cholesterol 7α- and 26R-hydroxylases, the key enzymes involved in bile acid formation. The transport of bile acids was not limited, as shown by their marked accumulation in the medium (>6-fold of cell content). HMG-CoA reductase (53.0 ± 6.7), cholesterol 7α-hydroxylase (15.5 ± 0.5), and acyl-CoA:cholesterol acyltransferase (ACAT; 201.7 ± 10.2) activities (in pmol ⋅ min−1 ⋅ mg protein−1) were present in the microsomal fractions. Our data show that biliary epithelial cells actively synthesize lipids and may directly contribute bile acids to the biliary fluid in vivo. This BDC line thus represents an efficient experimental tool to evaluate biliary epithelium sterol metabolism and to study biliary physiology.


Circulation ◽  
2001 ◽  
Vol 103 (2) ◽  
pp. 276-283 ◽  
Author(s):  
Masanori Aikawa ◽  
Elena Rabkin ◽  
Seigo Sugiyama ◽  
Sami J. Voglic ◽  
Yoshihiro Fukumoto ◽  
...  

1988 ◽  
Vol 252 (2) ◽  
pp. 395-399 ◽  
Author(s):  
C Marco de la Calle ◽  
G F Gibbons

In rats fed on a diet containing 1% cholesterol for 24 h, the decrease in hepatic non-saponifiable lipid synthesis, cholesterogenesis and 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase activity was accompanied by an increase in the proportion of newly synthesized polar sterols in vivo. In these animals there was also a strong inverse correlation between the proportion of polar sterols in the non-saponifiable lipid and hepatic HMG-CoA reductase activity. A similar correlation was not observed in animals fed on a normal diet. Cholesterogenesis in the intestine was not as sensitive to inhibition by dietary cholesterol as was that in the liver, and there was no increase in the polar-sterol content of the newly synthesized non-saponifiable-lipid fraction.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1567-1567 ◽  
Author(s):  
Marek Hus ◽  
Norbert Grzasko ◽  
Dariusz Jawniak ◽  
Marta Szostek ◽  
Anna Dmoszynska

Abstract In the recent years the treatment of patients with multiple myeloma (MM) has changed because of the introduction of new agents, mainly thalidomide (THAL) and its derivatives and bortezomib, an inhibitor of the 20S proteasome. Lovastatin (LOV) and other inhibitors of HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway, have been demonstrated to exibit antineoplasmatic and proapoptotic properties in numerous in vitro studies involving myeloma cell lines including our own experiments. This observation induced us to administer LOV in combination with THAL and dexamethasone (DEX). We report here our preliminary experiences with THAL and LOV therapy in patients with refractory and relapsed MM. We have treated 81 patients with THAL+DEX regimen (TD) or THAL+DEX+LOV regimen (TLD). Patients received drugs orally in 28 day cycles. THAL was given from day 1 to day 28 each cycle and it was started at a initial dose of 100 mg daily increased to 300 mg daily. DEX was administered at a dose of 40 mg daily in days 1–4 each cycle. LOV was administered at a dose of 2 mg/kg in days 1–5 and 8–12 and at a dose of 0.5 mg/kg in days 15–28 each cycle. TLD regimen was administered to 43 patients and TD regimen to 38 patients. Patients characteristics before treatment were as follows: the median age 61.2 years; 61% of patients IgG, 26% IgA, 7% light chain and 6% other; 76% of patients were light chain kappa and 24% lambda; median serum M-protein level was 4.2 g/dl, bone marrow plasma cells 47%, hemoglobin 10.1 g/dl, platelets 197 G/l, beta-2-microglobulin 4.2 mg/ml, albumin 3.9 g/dl and LDH 292 IU. The median follow-up was 29 month. A clinical response, defined as a reduction of M-protein level by 50% or more, was observed in 67.8% of patients in TD group and in 88.0% in TLD group. CR i NCR was observed in 35.0% and 62.7% respectively. In 11 TLD (25.5%.) and 4 TD (10.5%) patients successful stem cell harvest was performed and mean amount of collected CD34+ cells was 8.2*106/kg. Successful autologous transplantation was performed in 8 patients from this group. Overall survival in TLD group (median 23.0 months) was significantly longer than in TD group (median 18.0 months). Similarly event free survival was longer in TLD (median 7.0 months) group than in TD group (4.5 months). We observed significant negative correlation between response and bone marrow infiltration (p=0.008), M-protein level (p=0.0004) and positive correlation between response and albumin level (p=0.005). Short time to reduction of M-protein by 50% was connected with better response. Common side effects as somnolence, fatigue and constipation were observed in about 45% of patients in TLD and TD groups. In 2 TLD and in 3 TD patients we diagnosed deep vein thrombosis. In 2 TLD patients sinus bradycardia was observed. Our results suggest that addition of LOV to THAL and DEX improves response rate in patients with refactory and relapsed MM. Moreover it is possible to harvest stem cells and perform autologous stem cells graft in patients treated with such regimen. A future prospective randomised study is needed to confirm the value of LOV or other HMG-CoA reductase inhibitors in the treatment of MM patients.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e23527-e23527
Author(s):  
Aparna Subramaniam ◽  
Jing Zheng ◽  
Sudha Yalamanchili ◽  
Anthony Paul Conley ◽  
Ravin Ratan ◽  
...  

e23527 Background: EHE is a rare soft tissue tumor of endothelial origin. It is distinguished by the pathognomonic WWTR1-CAMTA1 fusion (WWTR1 is the gene symbol for TAZ) seen in 90% of the tumors. YAP1-TFE3 fusion is less common and seen in 10% of the tumors. YAP and TAZ are critical downstream effectors of the Hippo pathway that regulate tumor development, progression, invasion and metastasis by modulating the expression of many Hippo pathway targets. Recent studies have shown that inhibition of HMG-CoA reductase, a key enzyme of the mevalonate pathway, can regulate YAP/ TAZ by preventing their nuclear accumulation and inhibiting their transcriptional activity. This has led to interest in the role of statins, which inhibit HMG-CoA reductase, as a modulator of YAP/ TAZ that could benefit patients with sarcoma, particularly EHE. Methods: A retrospective analysis was performed on patients with a diagnosis of EHE at M D Anderson Cancer Center. Patients were identified using the electronic database system and screened for statin use using EMRs. Demographic and clinical characteristics were tabulated. KM method was used to assess overall survival and log rank test was used to test survival differences between the statin use and non- statin use groups. All statistical analysis was performed using STATA 14. Results: 226 patients with EHE were identified. 27 of them had recorded statin use during the course of their disease. The median OS for the statin use group was not reached and the mean OS was 221 months. The median OS for the non- statin use group was 123.9 months, while the mean OS was 160 months. The difference in OS was not statistically significant between the two groups. The median follow-up time for our cohort was 36.6 months. Conclusions: Our findings indicate a trend towards improved survival for patients with EHE who have received statins over the course of their disease. Our study is limited by a small number of patients who received statins. Prospective studies are required to assess the therapeutic benefit of statins in EHE. [Table: see text]


2000 ◽  
Vol 182 (15) ◽  
pp. 4319-4327 ◽  
Author(s):  
E. Imogen Wilding ◽  
James R. Brown ◽  
Alexander P. Bryant ◽  
Alison F. Chalker ◽  
David J. Holmes ◽  
...  

ABSTRACT The mevalonate pathway and the glyceraldehyde 3-phosphate (GAP)–pyruvate pathway are alternative routes for the biosynthesis of the central isoprenoid precursor, isopentenyl diphosphate. Genomic analysis revealed that the staphylococci, streptococci, and enterococci possess genes predicted to encode all of the enzymes of the mevalonate pathway and not the GAP-pyruvate pathway, unlike Bacillus subtilis and most gram-negative bacteria studied, which possess only components of the latter pathway. Phylogenetic and comparative genome analyses suggest that the genes for mevalonate biosynthesis in gram-positive cocci, which are highly divergent from those of mammals, were horizontally transferred from a primitive eukaryotic cell. Enterococci uniquely encode a bifunctional protein predicted to possess both 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and acetyl-CoA acetyltransferase activities. Genetic disruption experiments have shown that five genes encoding proteins involved in this pathway (HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, and mevalonate diphosphate decarboxylase) are essential for the in vitro growth of Streptococcus pneumoniae under standard conditions. Allelic replacement of the HMG-CoA synthase gene rendered the organism auxotrophic for mevalonate and severely attenuated in a murine respiratory tract infection model. The mevalonate pathway thus represents a potential antibacterial target in the low-G+C gram-positive cocci.


Sign in / Sign up

Export Citation Format

Share Document