Lovastatin as Salvage Immunomodulatory Therapy in Patients with Refractory and Relapsed Multipla Myeloma.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1567-1567 ◽  
Author(s):  
Marek Hus ◽  
Norbert Grzasko ◽  
Dariusz Jawniak ◽  
Marta Szostek ◽  
Anna Dmoszynska

Abstract In the recent years the treatment of patients with multiple myeloma (MM) has changed because of the introduction of new agents, mainly thalidomide (THAL) and its derivatives and bortezomib, an inhibitor of the 20S proteasome. Lovastatin (LOV) and other inhibitors of HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway, have been demonstrated to exibit antineoplasmatic and proapoptotic properties in numerous in vitro studies involving myeloma cell lines including our own experiments. This observation induced us to administer LOV in combination with THAL and dexamethasone (DEX). We report here our preliminary experiences with THAL and LOV therapy in patients with refractory and relapsed MM. We have treated 81 patients with THAL+DEX regimen (TD) or THAL+DEX+LOV regimen (TLD). Patients received drugs orally in 28 day cycles. THAL was given from day 1 to day 28 each cycle and it was started at a initial dose of 100 mg daily increased to 300 mg daily. DEX was administered at a dose of 40 mg daily in days 1–4 each cycle. LOV was administered at a dose of 2 mg/kg in days 1–5 and 8–12 and at a dose of 0.5 mg/kg in days 15–28 each cycle. TLD regimen was administered to 43 patients and TD regimen to 38 patients. Patients characteristics before treatment were as follows: the median age 61.2 years; 61% of patients IgG, 26% IgA, 7% light chain and 6% other; 76% of patients were light chain kappa and 24% lambda; median serum M-protein level was 4.2 g/dl, bone marrow plasma cells 47%, hemoglobin 10.1 g/dl, platelets 197 G/l, beta-2-microglobulin 4.2 mg/ml, albumin 3.9 g/dl and LDH 292 IU. The median follow-up was 29 month. A clinical response, defined as a reduction of M-protein level by 50% or more, was observed in 67.8% of patients in TD group and in 88.0% in TLD group. CR i NCR was observed in 35.0% and 62.7% respectively. In 11 TLD (25.5%.) and 4 TD (10.5%) patients successful stem cell harvest was performed and mean amount of collected CD34+ cells was 8.2*106/kg. Successful autologous transplantation was performed in 8 patients from this group. Overall survival in TLD group (median 23.0 months) was significantly longer than in TD group (median 18.0 months). Similarly event free survival was longer in TLD (median 7.0 months) group than in TD group (4.5 months). We observed significant negative correlation between response and bone marrow infiltration (p=0.008), M-protein level (p=0.0004) and positive correlation between response and albumin level (p=0.005). Short time to reduction of M-protein by 50% was connected with better response. Common side effects as somnolence, fatigue and constipation were observed in about 45% of patients in TLD and TD groups. In 2 TLD and in 3 TD patients we diagnosed deep vein thrombosis. In 2 TLD patients sinus bradycardia was observed. Our results suggest that addition of LOV to THAL and DEX improves response rate in patients with refactory and relapsed MM. Moreover it is possible to harvest stem cells and perform autologous stem cells graft in patients treated with such regimen. A future prospective randomised study is needed to confirm the value of LOV or other HMG-CoA reductase inhibitors in the treatment of MM patients.

Blood ◽  
2003 ◽  
Vol 102 (9) ◽  
pp. 3354-3362 ◽  
Author(s):  
Niels W. C. J. van de Donk ◽  
Marloes M. J. Kamphuis ◽  
Berris van Kessel ◽  
Henk M. Lokhorst ◽  
Andries C. Bloem

AbstractHMG-CoA reductase is the rate-limiting enzyme of the mevalonate pathway leading to the formation of cholesterol and isoprenoids such as farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP). The inhibition of HMG-CoA reductase by lovastatin induced apoptosis in plasma cell lines and tumor cells from patients with multiple myeloma. Here we show that cotreatment with mevalonate or geranylgeranyl moieties, but not farnesyl groups, rescued myeloma cells from lovastatin-induced apoptosis. In addition, the inhibition of geranylgeranylation by specific inhibition of geranylgeranyl transferase I (GGTase I) induced the apoptosis of myeloma cells. Apoptosis triggered by the inhibition of geranylgeranylation was associated with reduction of Mcl-1 protein expression, collapse of the mitochondrial transmembrane potential, expression of the mitochondrial membrane protein 7A6, cytochrome c release from mitochondria into the cytosol, and stimulation of caspase-3 activity. These results imply that protein geranylgeranylation is critical for regulating myeloma tumor cell survival, possibly through regulating Mcl-1 expression. Our results show that pharmacologic agents such as lovastatin or GGTase inhibitors may be useful in the treatment of multiple myeloma.


2020 ◽  
Vol 17 (1(Suppl.)) ◽  
pp. 0235
Author(s):  
Maeda Mohammad ◽  
Ahmed Majeed Al-Shammari ◽  
Rafal H Abdulla ◽  
Aesar Ahmed ◽  
Aseel Khalid

Background: Adipose derived-mesenchymal stem cells have been used as an alternative to bone marrow cells in this study. Objective: We investigated the in vitro isolation, identification, and differentiation of stem cells into neuron cells, in order to produce neuron cells via cell culture, which would be useful in nerve injury treatment. Method: Mouse adipose mesenchymal stem cells were dissected from the abdominal subcutaneous region. Neural differentiation was induced using β-mercaptoethanol. This study included two different neural stage markers, i.e. nestin and neurofilament light-chain, to detect immature and mature neurons, respectively. Results: The immunocytochemistry results showed that the use of β-mercaptoethanol resulted in the successful production of neuron cells. This was attributable to the increase and significant overexpression of the nestin protein during the early exposure period, which resulted in the expression of the highest levels of nestin. In comparison, the expression level of neurofilament light-chain protein also increased with time but less than nestin. Non-treated mesenchymal stem cells, considered as control showed very low expression for both markers. Conclusion: The results of this study indicate that adipose mesenchymal cells represent a good, easily obtainable source of bone marrow cells used to developing the differentiation process.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yicai Zhang ◽  
Yi Sun ◽  
Jinlong Liu ◽  
Yu Han ◽  
Jinglong Yan

The molecular mechanisms how bone marrow-derived mesenchymal stem cells (BMSCs) differentiate into osteoblast need to be investigated. MicroRNAs (miRNAs) contribute to the osteogenic differentiation of BMSCs. However, the effect of miR-346-5p on osteogenic differentiation of BMSCs is not clear. This study is aimed at elucidating the underlying mechanism by which miR-346-5p regulates osteogenic differentiation of human BMSCs. Results of alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining indicated that upregulation of miR-346-5p suppressed osteogenic differentiation of BMSCs, whereas downregulation of miR-346-5p enhanced this process. The protein levels of the osteoblastic markers Osterix and Runt-related transcription factor 2 (Runx2) were decreased in cells treated with miR-346-5p mimic at day 7 and day 14 after being differentiated. By contrast, downregulation of miR-346-5p elevated the protein levels of Osterix and Runx2. Moreover, a dual-luciferase reporter assay revealed that Transmembrane Protein 9 (TMEM9) was a target of miR-346-5p. In addition, the Western Blot results demonstrated that the TMEM9 protein level was significantly reduced by the miR-346-5p mimic whereas downregulation of miR-346-5p improved the protein level of TMEM9. These results together demonstrated that miR-346-5p served a key role in BMSC osteogenic differentiation of through targeting TMEM9, which may provide a novel target for clinical treatments of bone injury.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5064-5064 ◽  
Author(s):  
Shaji Kumar ◽  
S. Vincent Rajkumar ◽  
Matthew Plevak ◽  
Robert A. Kyle ◽  
Jerry A. Katzmann ◽  
...  

Abstract Background: The measurement of monoclonal (M) protein in the serum and urine is critical for response assessment and disease evaluation in patients with multiple myeloma (MM). The serum free light chain (FLC) assay offers a new and sensitive method of assessing response to therapy. An important question that has not been adequately addressed is the correlation between 24 hour urine M protein levels and serum FLC measurements, and the extent to which response to therapy estimated using the FLC assay correlates with that assessed using the 24 hour urine M protein level. Methods: A total of 2194 sets of data, with simultaneous UPEP and serum FLC measurement, were studied. These included 752 unique patients, with individual patients having 1–23 paired assessments over time. FLC estimation was carried out using the serum FLC assay (Freelite; The Binding Site Limited, UK) performed on a Dade-Behring Nephelometer. Based on the established reference range, kappa/lambda FLC ratio <0.26 or >1.65 were defined as abnormal indicating the presence of monoclonal lambda and kappa FLC, respectively. The monoclonal light chain isotype was considered the involved FLC isotype, and the opposite light chain type as the uninvolved FLC type. The Urine M protein by UPEP was compared to the serum levels of the involved light chain using Spearman Rank Correlation. For comparisons in individual patients over time, those with at least 10 measurements each were studied. Results: The median involved FLC level in patients with an undetectable urine M protein was 2.3 mg/dl compared to 32.2 mg/dL among those with a detectable urine M protein (P<0.001). Among the 1676 points with an abnormal FLC ratio, only 75% had an M protein detected in the urine, P < 0.001. Conversely, among patients with a positive urine M-protein, 91% had an abnormal FLC ratio. When all the 2194 data points were considered together, there was a significant correlation between the urine M protein level and the FLC levels (FLC level calculated as the difference between involved and uninvolved levels), rho=0.763, P < 0.001. The correlation did not change when patients with a serum creatinine of over 2.5 were excluded. The correlation between FLC levels and urinary M protein can be affected by several factors such as renal function that will differ across patients. Therefore, we examined whether the correlation between the two variables is stronger when the variations introduced by inter-patient differences in the relationship between the two variables are eliminated. In order to do this, we studied individual patients on whom multiple data points over time were available. One patient who had the maximum number of paired assessments (23 pairs) of serum FLC level and urinary M protein; the correlation between the two variables over time was highly significant, rho 0.981, p<0.001. Similarly 26 other patients who had measurable urine M protein levels in whom 10 nor more paired observations over time were available, also showed significant correlations, rho, range 0.726–0.981, p<0.01. Conclusion: There is a significant correlation between urine M-protein and serum free light chain across patients and the correlation is stronger in individual patients in whom the effect of inter-patient variation in other confounding factors can be eliminated. These data if confirmed in a clinical trial setting would support the use of serum FLC levels instead of urinary M protein measurements to assess response to therapy.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1345-1345
Author(s):  
Dan Ran ◽  
Mario Schubert ◽  
Larissa Pietsch ◽  
Isabel Taubert ◽  
Christian Wallenwein ◽  
...  

Abstract INTRODUCTION: Normal hematopoietic stem cells (HSC) are characterized by their ability to self-renew, to generate multiple cell-lineages, and show slow divisional kinetics. Leukemic stem cells (LSC) have been reported to show similar characteristics but their identification has been elusive. We have studied various methods and have identified aldehyde dehydrogenase (ALDH) staining as an optimal method for the enrichment of primary human LSC. MATERIAL&METHODS: Bone marrow samples were obtained from patients with newly diagnosed AML after informed consent. Mononuclear cells were stained with Aldefluor and sorted by flow cytometry according to their forward/side scatter characteristics and ALDH activity (ALDH+/ALDH−). Alternatively, primary AML samples were being enriched for CD34+ cells by magnetic column, then double-stained with CD34-antibodies and Aldefluor and sorted for the co-expression of CD34+ and ALDH+, respectively for CD34+ alone. Human Mesenchymal Stromal Cells (MSC), isolated from human bone marrow, were used as a surrogate model for the cellular microenvironment of the hematopoietic niche. Adhesion of various AML cell lines and subpopulations of primary leukemic cells (ALDH+, ALDH−, CD34+, CD34+/ALDH+, all blasts) to MSC was tested in the adhesion chamber assay. Semi-quantitative RT-PCR was used to analyze the gene expression of various adhesion molecules and Western- Blot analysis was performed to validate the PCR-results on protein level. The generation of secondary leukemic colonies was evaluated in a semi-solid methylcellulose medium, as well as in a long term co-culture system (LSC-IC assay; in analogy to the LTC-IC assay). RESULTS: The percentage of ALDH+ cells ranged from 0.01% to 13.2% with a median of 1.47% (n=55). Adhesion significantly differed in the ALDH+ and ALDH− subpopulations: 85±4% of ALDH+ cells but only 61±8% of ALDH− cells were adherent (n=11, p<0.001). Adhesion molecules, such as CXCR4 and CD44, were highly expressed on the ALDH+ subpopulation both on mRNA level and protein level, in contrast to the ALDH− subpopulation. Analysis of the initial divisional kinetics on single cell base showed that the ALDH+ subpopulation contained more slow dividing cells whereas the majority of the ALDH− subpopulation consisted of fast-dividing cells (n=3; p<0.01). The frequency of long term leukemic colony initiating cells (LSC-IC) was 3.82% in the ALDH+ but only 0.01% in the ALDH− (n=21; p<0.01). In the CD34+ the LSC-IC frequency was 1.96% versus 0.01% in the CD34− (n=5, p<0.01). The highest LSC-IC frequency could be monitored in ALDH+/CD34+ cells: 6.1% generated secondary leukemic colonies (n=5). These colonies, harvested after 7 weeks of cultivation, were examined for their immune phenotype and screened for cytogenetic aberrations by fluorescent in situ hybridization (FISH) and the chromosomal aberrations were consistent with the AML samples taken at diagnosis. Furthermore, the frequency of ALDH+ cells correlated significantly with adverse prognostic factors: patients with a high-risk karyotype had a mean of 2.9% ALDH+ cells (n=21); in contrast, patients with a normal karyotype had a mean of 0.4% ALDH+ cells in their bone marrow (n=34; p<0.001). The ability of ALDH+ versus ALDH− subsets to generate secondary leukemia in the animal model is concurrently examined. DISCUSSION: In summary, measurement of the ALDH activity provides a useful tool for the isolation of a distinct AML-blast subpopulation with stem-cell like features (LSC). The ALDH+ subsets showed higher affinity to the surrogate niche (MSC), elevated expression of CD44, Cadherin-2, and CXCR4 and were associated with an increased frequency of secondary leukemic colonies in vitro (LSC-IC). Above all, the frequency of ALDH+ blasts correlated with clinical prognostic factors, which substanciates LSC as a relevant therapeutic target.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2156-2156
Author(s):  
Yi Kong Keung ◽  
Michael W Beaty ◽  
Mark Pettenati ◽  
Denise Levitan ◽  
Istvan Molnar ◽  
...  

Abstract BACKGROUND: Autologous graft versus host disease (GVHD) and engraftment syndrome (ES) probably result from host immune dysfunction during the recovery from high dose chemotherapy and radiation. Since impaired immunity has been associated with myelodysplastic syndrome, we explore the risk factors of post-transplant myelodysplastic syndrome/acute myeloid leukemia (MDS), specifically, in relation to the GVHD and ES. PATIENTS AND METHODS: Consecutive patients with lymphoma undergoing autologous transplantation in our institution from 1991 to 2006. RESULTS: There is total of 452 lymphoma patients undergoing autologous transplants in this period; 274 males and 178 females, median age of 50 years (range 16–76). There are 85 patients with Hodgkin’s lymphoma (HL) and 367 non-Hodgkin’s lymphoma (NHL), of which, 291 are B-cell, 47 T-cell and 29 unknown. Total of 277 received TBI-based and 175 chemotherapy-alone conditioning regimens; 98 patients received transplantation of the bone marrow (BM), 343 peripheral blood stem cells (PBSC) and 11 both. Eleven patients had second autologous transplantation for progressive lymphoma and another four patients have second allogeneic transplant for MDS. Thirty-two patients (7%) died of regimen-related toxicity within 100 days of transplant. Eleven patients developed severe engraftment syndrome (high fever, skin rash ± pulmonary infiltrate requiring systemic steroid); 27 patients had skin and 2 patients had gastrointestinal biopsies consistent with GVHD. The median follow-up of the patients was 6.2 years and median overall survival 5.3 years. Univariate analysis using Kaplan-Meier plots and logrank tests, younger age, HL, B-phenotype, source of stem cells (BM vs PBSC), chemo-sensitivity, less prior chemotherapy are better prognostic indicators. Conditioning regimens (TBI-based vs non-TBI) do not affect the overall survival. Twenty-four patients (5.3%) developed MDS with median time of onset of 4.2 years (range 8 months-7.5 years). Additional 5 patients developed clonal karyotypic abnormalities in the bone marrow without clinical MDS. Actuarial probabilities of developing MDS 5 and 8 years after transplant are 5% and 15% respectively. The incidences of MDS are similar in HL and NHL. Significant risk factors of developing MDS include older age, advanced stage, onset of ES or GVHD, and longer intervals between the initial diagnoses to transplant. CONCLUSION: Although overall incidence of MDS is only 5.3%, the actuarial risk at 8 years is up to 15% and may be higher in selected patients such as older age, and prolonged interval from initial diagnosis to transplant (a surrogate for prior chemotherapy). The association of engraftment syndrome and GVHD to MDS is intriguing. It is conceivable that perturbation to the host immunity caused by either prior chemotherapy, conditioning regimens in the elderly may play a role in the development of MDS after autologous transplant.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e23527-e23527
Author(s):  
Aparna Subramaniam ◽  
Jing Zheng ◽  
Sudha Yalamanchili ◽  
Anthony Paul Conley ◽  
Ravin Ratan ◽  
...  

e23527 Background: EHE is a rare soft tissue tumor of endothelial origin. It is distinguished by the pathognomonic WWTR1-CAMTA1 fusion (WWTR1 is the gene symbol for TAZ) seen in 90% of the tumors. YAP1-TFE3 fusion is less common and seen in 10% of the tumors. YAP and TAZ are critical downstream effectors of the Hippo pathway that regulate tumor development, progression, invasion and metastasis by modulating the expression of many Hippo pathway targets. Recent studies have shown that inhibition of HMG-CoA reductase, a key enzyme of the mevalonate pathway, can regulate YAP/ TAZ by preventing their nuclear accumulation and inhibiting their transcriptional activity. This has led to interest in the role of statins, which inhibit HMG-CoA reductase, as a modulator of YAP/ TAZ that could benefit patients with sarcoma, particularly EHE. Methods: A retrospective analysis was performed on patients with a diagnosis of EHE at M D Anderson Cancer Center. Patients were identified using the electronic database system and screened for statin use using EMRs. Demographic and clinical characteristics were tabulated. KM method was used to assess overall survival and log rank test was used to test survival differences between the statin use and non- statin use groups. All statistical analysis was performed using STATA 14. Results: 226 patients with EHE were identified. 27 of them had recorded statin use during the course of their disease. The median OS for the statin use group was not reached and the mean OS was 221 months. The median OS for the non- statin use group was 123.9 months, while the mean OS was 160 months. The difference in OS was not statistically significant between the two groups. The median follow-up time for our cohort was 36.6 months. Conclusions: Our findings indicate a trend towards improved survival for patients with EHE who have received statins over the course of their disease. Our study is limited by a small number of patients who received statins. Prospective studies are required to assess the therapeutic benefit of statins in EHE. [Table: see text]


2000 ◽  
Vol 182 (15) ◽  
pp. 4319-4327 ◽  
Author(s):  
E. Imogen Wilding ◽  
James R. Brown ◽  
Alexander P. Bryant ◽  
Alison F. Chalker ◽  
David J. Holmes ◽  
...  

ABSTRACT The mevalonate pathway and the glyceraldehyde 3-phosphate (GAP)–pyruvate pathway are alternative routes for the biosynthesis of the central isoprenoid precursor, isopentenyl diphosphate. Genomic analysis revealed that the staphylococci, streptococci, and enterococci possess genes predicted to encode all of the enzymes of the mevalonate pathway and not the GAP-pyruvate pathway, unlike Bacillus subtilis and most gram-negative bacteria studied, which possess only components of the latter pathway. Phylogenetic and comparative genome analyses suggest that the genes for mevalonate biosynthesis in gram-positive cocci, which are highly divergent from those of mammals, were horizontally transferred from a primitive eukaryotic cell. Enterococci uniquely encode a bifunctional protein predicted to possess both 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and acetyl-CoA acetyltransferase activities. Genetic disruption experiments have shown that five genes encoding proteins involved in this pathway (HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, and mevalonate diphosphate decarboxylase) are essential for the in vitro growth of Streptococcus pneumoniae under standard conditions. Allelic replacement of the HMG-CoA synthase gene rendered the organism auxotrophic for mevalonate and severely attenuated in a murine respiratory tract infection model. The mevalonate pathway thus represents a potential antibacterial target in the low-G+C gram-positive cocci.


2013 ◽  
Vol 27 (4) ◽  
pp. 607-612 ◽  
Author(s):  
Mona A. Amin ◽  
Dina Sabry ◽  
Laila A. Rashed ◽  
Wael M. Aref ◽  
Mohamed Ahmed el-Ghobary ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document