scholarly journals Lampreys, the jawless vertebrates, contain only two ParaHox gene clusters

2017 ◽  
Vol 114 (34) ◽  
pp. 9146-9151 ◽  
Author(s):  
Huixian Zhang ◽  
Vydianathan Ravi ◽  
Boon-Hui Tay ◽  
Sumanty Tohari ◽  
Nisha E. Pillai ◽  
...  

ParaHox genes (Gsx, Pdx, and Cdx) are an ancient family of developmental genes closely related to the Hox genes. They play critical roles in the patterning of brain and gut. The basal chordate, amphioxus, contains a single ParaHox cluster comprising one member of each family, whereas nonteleost jawed vertebrates contain four ParaHox genomic loci with six or seven ParaHox genes. Teleosts, which have experienced an additional whole-genome duplication, contain six ParaHox genomic loci with six ParaHox genes. Jawless vertebrates, represented by lampreys and hagfish, are the most ancient group of vertebrates and are crucial for understanding the origin and evolution of vertebrate gene families. We have previously shown that lampreys contain six Hox gene loci. Here we report that lampreys contain only two ParaHox gene clusters (designated as α- and β-clusters) bearing five ParaHox genes (Gsxα, Pdxα, Cdxα, Gsxβ, and Cdxβ). The order and orientation of the three genes in the α-cluster are identical to that of the single cluster in amphioxus. However, the orientation of Gsxβ in the β-cluster is inverted. Interestingly, Gsxβ is expressed in the eye, unlike its homologs in jawed vertebrates, which are expressed mainly in the brain. The lamprey Pdxα is expressed in the pancreas similar to jawed vertebrate Pdx genes, indicating that the pancreatic expression of Pdx was acquired before the divergence of jawless and jawed vertebrate lineages. It is likely that the lamprey Pdxα plays a crucial role in pancreas specification and insulin production similar to the Pdx of jawed vertebrates.

Author(s):  
Conghui Liu ◽  
Yuwei Ren ◽  
Zaiyuan Li ◽  
Qi Hu ◽  
Lijuan Yin ◽  
...  

AbstractWhole-genome duplication (WGD) has been observed across a wide variety of eukaryotic groups, contributing to evolutionary diversity and environmental adaptability. Mollusks are the second largest group of animals, and are among the organisms that have successfully adapted to the nonmarine realm through aquatic-terrestrial (A-T) transition, and no comprehensive research on WGD has been reported in this group. To explore WGD and the A-T transition in Mollusca, we assembled a chromosome-level reference genome for the giant African snail Achatina immaculata, a global invasive species, and compared the genomes of two giant African snails (A. immaculata and Achatina fulica) to the other available mollusk genomes. The chromosome-level macrosynteny, colinearity blocks, Ks peak and Hox gene clusters collectively suggested the occurrence of a WGD event shared by A. immaculata and A. fulica. The estimated timing of this WGD event (∼70 MYA) was close to the speciation age of the Sigmurethra-Orthurethra (within Stylommatophora) lineage and the Cretaceous-Tertiary (K-T) mass extinction, indicating that the WGD reported herein may have been a common event shared by all Sigmurethra-Orthurethra species and could have conferred ecological adaptability and genomic plasticity allowing the survival of the K-T extinction. Based on macrosynteny, we deduced an ancestral karyotype containing 8 conserved clusters for the Gastropoda-Bivalvia lineage. To reveal the mechanism of WGD in shaping adaptability to terrestrial ecosystems, we investigated gene families related to the respiration, aestivation and immune defense of giant African snails. Several mucus-related gene families expanded early in the Stylommatophora lineage, functioning in water retention, immune defense and wound healing. The hemocyanins, PCK and FBP families were doubled and retained after WGD, enhancing the capacity for gas exchange and glucose homeostasis in aestivation. After the WGD, zinc metalloproteinase genes were highly tandemly duplicated to protect tissue against ROS damage. This evidence collectively suggests that although the WGD may not have been the direct driver of the A-T transition, it provided an important legacy for the terrestrial adaptation of the giant African snail.


2018 ◽  
Author(s):  
Tao Zhao ◽  
M. Eric Schranz

AbstractBackgroundSynteny analysis is a valuable approach for understanding eukaryotic gene and genome evolution, but still relies largely on pairwise or reference-based comparisons. Network approaches can be utilized to expand large-scale phylogenomic microsynteny studies. There is now a wealth of completed mammalian (animal) and angiosperm (plant) genomes, two very important lineages that have evolved and radiated over the last ~170 million years. Genomic organization and conservation differs greatly between these two groups; however, a systematic and comparative characterization of synteny between the two lineages using the same approaches and metrics has not been undertaken.ResultsWe have built complete microsynteny networks for 87 mammalian and 107 angiosperm genomes, which contain 1,464,753 nodes (genes) and 49,426,268 edges (syntenic connections between genes) for mammals, and 2,234,461 nodes and 46,938,272 edges for angiosperms, respectively. Exploiting network statistics, we present the functional characteristics of extremely conserved and diversified gene families. We summarize the features of all syntenic gene clusters and present lineage-wide phylogenetic profiling, revealing intriguing sub-clade lineage-specific clusters. We depict several representative clusters of important developmental genes in humans, such as CENPJ, p53 and NFE2. Finally, we present the complete homeobox gene family networks for both mammals (including Hox and ParaHox gene clusters) and angiosperms.ConclusionsOur results illustrate and quantify overall synteny conservation and diversification properties of all annotated genes for mammals and angiosperms and show that plant genomes are in general more dynamic.


2021 ◽  
Author(s):  
Alex Dornburg ◽  
Dustin J Wcisel ◽  
Katerina Zapfe ◽  
Emma Ferraro ◽  
Lindsay Roupe-Abrams ◽  
...  

Over 99% of ray-finned fishes (Actinopterygii) are teleosts, a clade that comprises half of all living vertebrates that have diversified across virtually all fresh and saltwater ecosystems. This ecological diversity raises the question of how the immunogenetic diversity required to persist under heterogeneous pathogen pressures evolved. The teleost genome duplication (TGD) has been hypothesized as the evolutionary event that provided the genomic substrate for rapid genomic evolution and innovation. However, studies of putative teleost-specific innate immune receptors have been largely limited to comparisons either among teleosts or between teleosts and distantly related vertebrate clades such as tetrapods. Here we describe and characterize the receptor diversity of two clustered innate immune gene families in the teleost sister lineage: Holostei (bowfin and gars). Using genomic and transcriptomic data, we provide a detailed investigation of the phylogenetic history and conserved synteny of gene clusters encoding diverse immunoglobulin domain-containing proteins (DICPs) and novel immune-type receptors (NITRs). These data demonstrate an ancient linkage of DICPs to the major histocompatibility complex (MHC) and reveal an evolutionary origin of NITR variable-joining (VJ) exons that predate the TGD by at least 50 million years. Further characterizing the receptor diversity of Holostean DICPs and NITRs illuminates a sequence diversity that rivals the diversity of these innate immune receptor families in many teleosts. Taken together, our findings provide important historical context for the evolution of these gene families that challenge prevailing expectations concerning the consequences of the TGD during actinopterygiian evolution.


Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1249-1257
Author(s):  
Ilya Ruvinsky ◽  
Lee M Silver ◽  
Jeremy J Gibson-Brown

Abstract The duplication of preexisting genes has played a major role in evolution. To understand the evolution of genetic complexity it is important to reconstruct the phylogenetic history of the genome. A widely held view suggests that the vertebrate genome evolved via two successive rounds of whole-genome duplication. To test this model we have isolated seven new T-box genes from the primitive chordate amphioxus. We find that each amphioxus gene generally corresponds to two or three vertebrate counterparts. A phylogenetic analysis of these genes supports the idea that a single whole-genome duplication took place early in vertebrate evolution, but cannot exclude the possibility that a second duplication later took place. The origin of additional paralogs evident in this and other gene families could be the result of subsequent, smaller-scale chromosomal duplications. Our findings highlight the importance of amphioxus as a key organism for understanding evolution of the vertebrate genome.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandre Perochon ◽  
Harriet R. Benbow ◽  
Katarzyna Ślęczka-Brady ◽  
Keshav B. Malla ◽  
Fiona M. Doohan

AbstractThere is increasing evidence that some functionally related, co-expressed genes cluster within eukaryotic genomes. We present a novel pipeline that delineates such eukaryotic gene clusters. Using this tool for bread wheat, we uncovered 44 clusters of genes that are responsive to the fungal pathogen Fusarium graminearum. As expected, these Fusarium-responsive gene clusters (FRGCs) included metabolic gene clusters, many of which are associated with disease resistance, but hitherto not described for wheat. However, the majority of the FRGCs are non-metabolic, many of which contain clusters of paralogues, including those implicated in plant disease responses, such as glutathione transferases, MAP kinases, and germin-like proteins. 20 of the FRGCs encode nonhomologous, non-metabolic genes (including defence-related genes). One of these clusters includes the characterised Fusarium resistance orphan gene, TaFROG. Eight of the FRGCs map within 6 FHB resistance loci. One small QTL on chromosome 7D (4.7 Mb) encodes eight Fusarium-responsive genes, five of which are within a FRGC. This study provides a new tool to identify genomic regions enriched in genes responsive to specific traits of interest and applied herein it highlighted gene families, genetic loci and biological pathways of importance in the response of wheat to disease.


2021 ◽  
Vol 7 (6) ◽  
pp. 485
Author(s):  
Boxun Li ◽  
Yang Yang ◽  
Jimiao Cai ◽  
Xianbao Liu ◽  
Tao Shi ◽  
...  

Rubber tree Corynespora leaf fall (CLF) disease, caused by the fungus Corynespora cassiicola, is one of the most damaging diseases in rubber tree plantations in Asia and Africa, and this disease also threatens rubber nurseries and young rubber plantations in China. C. cassiicola isolates display high genetic diversity, and virulence profiles vary significantly depending on cultivar. Although one phytotoxin (cassicolin) has been identified, it cannot fully explain the diversity in pathogenicity between C. cassiicola species, and some virulent C. cassiicola strains do not contain the cassiicolin gene. In the present study, we report high-quality gapless genome sequences, obtained using short-read sequencing and single-molecule long-read sequencing, of two Chinese C. cassiicola virulent strains. Comparative genomics of gene families in these two stains and a virulent CPP strain from the Philippines showed that all three strains experienced different selective pressures, and metabolism-related gene families vary between the strains. Secreted protein analysis indicated that the quantities of secreted cell wall-degrading enzymes were correlated with pathogenesis, and the most aggressive CCP strain (cassiicolin toxin type 1) encoded 27.34% and 39.74% more secreted carbohydrate-active enzymes (CAZymes) than Chinese strains YN49 and CC01, respectively, both of which can only infect rubber tree saplings. The results of antiSMASH analysis showed that all three strains encode ~60 secondary metabolite biosynthesis gene clusters (SM BGCs). Phylogenomic and domain structure analyses of core synthesis genes, together with synteny analysis of polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) gene clusters, revealed diversity in the distribution of SM BGCs between strains, as well as SM polymorphisms, which may play an important role in pathogenic progress. The results expand our understanding of the C. cassiicola genome. Further comparative genomic analysis indicates that secreted CAZymes and SMs may influence pathogenicity in rubber tree plantations. The findings facilitate future exploration of the molecular pathogenic mechanism of C. cassiicola.


Genetics ◽  
1996 ◽  
Vol 144 (1) ◽  
pp. 329-338 ◽  
Author(s):  
R C Shoemaker ◽  
K Polzin ◽  
J Labate ◽  
J Specht ◽  
E C Brummer ◽  
...  

Abstract Restriction fragment length polymorphism mapping data from nine populations (Glycine max × G. soja and G. max × G. max) of the Glycine subgenus soja genome led to the identification of many duplicated segments of the genome. Linkage groups contained up to 33 markers that were duplicated on other linkage groups. The size of homoeologous regions ranged from 1.5 to 106.4 cM, with an average size of 45.3 cM. We observed segments in the soybean genome that were present in as many as six copies with an average of 2.55 duplications per segment. The presence of nested duplications suggests that at least one of the original genomes may have undergone an additional round of tetraploidization. Tetraploidization, along with large internal duplications, accounts for the highly duplicated nature of the genome of the subgenus. Quantitative trait loci for seed protein and oil showed correspondence across homoeologous regions, suggesting that the genes or gene families contributing to seed composition have retained similar functions throughout the evolution of the chromosomes.


2019 ◽  
Vol 116 (37) ◽  
pp. 18498-18506 ◽  
Author(s):  
Yoshitaka Fujihara ◽  
Taichi Noda ◽  
Kiyonori Kobayashi ◽  
Asami Oji ◽  
Sumire Kobayashi ◽  
...  

CRISPR/Cas9-mediated genome editing technology enables researchers to efficiently generate and analyze genetically modified animals. We have taken advantage of this game-changing technology to uncover essential factors for fertility. In this study, we generated knockouts (KOs) of multiple male reproductive organ-specific genes and performed phenotypic screening of these null mutant mice to attempt to identify proteins essential for male fertility. We focused on making large deletions (dels) within 2 gene clusters encoding cystatin (CST) and prostate and testis expressed (PATE) proteins and individual gene mutations in 2 other gene families encoding glycerophosphodiester phosphodiesterase domain (GDPD) containing and lymphocyte antigen 6 (Ly6)/Plaur domain (LYPD) containing proteins. These gene families were chosen because many of the genes demonstrate male reproductive tract-specific expression. AlthoughGdpd1andGdpd4mutant mice were fertile, disruptions ofCstandPategene clusters andLypd4resulted in male sterility or severe fertility defects secondary to impaired sperm migration through the oviduct. While absence of the epididymal protein families CST and PATE affect the localization of the sperm membrane protein A disintegrin and metallopeptidase domain 3 (ADAM3), the sperm acrosomal membrane protein LYPD4 regulates sperm fertilizing ability via an ADAM3-independent pathway. Thus, use of CRISPR/Cas9 technologies has allowed us to quickly rule in and rule out proteins required for male fertility and expand our list of male-specific proteins that function in sperm migration through the oviduct.


Genetics ◽  
2002 ◽  
Vol 160 (3) ◽  
pp. 1067-1074
Author(s):  
Susan J Brown ◽  
John P Fellers ◽  
Teresa D Shippy ◽  
Elizabeth A Richardson ◽  
Mark Maxwell ◽  
...  

Abstract The homeotic selector genes of the red flour beetle, Tribolium castaneum, are located in a single cluster. We have sequenced the region containing the homeotic selector genes required for proper development of the head and anterior thorax, which is the counterpart of the ANTC in Drosophila. This 280-kb interval contains eight homeodomain-encoding genes, including single orthologs of the Drosophila genes labial, proboscipedia, Deformed, Sex combs reduced, fushi tarazu, and Antennapedia, as well as two orthologs of zerknüllt. These genes are all oriented in the same direction, as are the Hox genes of amphioxus, mice, and humans. Although each transcription unit is similar to its Drosophila counterpart in size, the Tribolium genes contain fewer introns (with the exception of the two zerknüllt genes), produce shorter mRNAs, and encode smaller proteins. Unlike the ANTC, this region of the Tribolium HOMC contains no additional genes.


2019 ◽  
Author(s):  
Mosè Manni ◽  
Felipe A. Simao ◽  
Hugh M. Robertson ◽  
Marco A. Gabaglio ◽  
Robert M. Waterhouse ◽  
...  

AbstractThe dipluran two-pronged bristletail Campodea augens is a blind ancestrally wingless hexapod with the remarkable capacity to regenerate lost body appendages such as its long antennae. As sister group to Insecta (sensu stricto), Diplura are key to understanding the early evolution of hexapods and the origin and evolution of insects. Here we report the 1.2-Gbp draft genome of C. augens and results from comparative genomic analyses with other arthropods. In C. augens we uncovered the largest chemosensory gene repertoire of ionotropic receptors in the animal kingdom, a massive expansion which might compensate for the loss of vision. We found a paucity of photoreceptor genes mirroring at the genomic level the secondary loss of an ancestral external photoreceptor organ. Expansions of detoxification and carbohydrate metabolism gene families might reflect adaptations for foraging behaviour, and duplicated apoptotic genes might underlie its high regenerative potential.The C. augens genome represents one of the key references for studying the emergence of genomic innovations in insects, the most diverse animal group, and opens up novel opportunities to study the under-explored biology of diplurans.


Sign in / Sign up

Export Citation Format

Share Document