scholarly journals Enteroendocrine and tuft cells support Lgr5 stem cells on Paneth cell depletion

2019 ◽  
Vol 116 (52) ◽  
pp. 26599-26605 ◽  
Author(s):  
Johan H. van Es ◽  
Kay Wiebrands ◽  
Carmen López-Iglesias ◽  
Marc van de Wetering ◽  
Laura Zeinstra ◽  
...  

Cycling intestinal Lgr5+stem cells are intermingled with their terminally differentiated Paneth cell daughters at crypt bottoms. Paneth cells provide multiple secreted (e.g., Wnt, EGF) as well as surface-bound (Notch ligand) niche signals. Here we show that ablation of Paneth cells in mice, using a diphtheria toxin receptor gene inserted into the P-lysozyme locus, does not affect the maintenance of Lgr5+stem cells. Flow cytometry, single-cell sequencing, and histological analysis showed that the ablated Paneth cells are replaced by enteroendocrine and tuft cells. As these cells physically occupy Paneth cell positions between Lgr5 stem cells, they serve as an alternative source of Notch signals, which are essential for Lgr5+stem cell maintenance. Our combined in vivo results underscore the adaptive flexibility of the intestine in maintaining normal tissue homeostasis.

2016 ◽  
Vol 113 (37) ◽  
pp. E5399-E5407 ◽  
Author(s):  
Nobuo Sasaki ◽  
Norman Sachs ◽  
Kay Wiebrands ◽  
Saskia I. J. Ellenbroek ◽  
Arianna Fumagalli ◽  
...  

Leucine-rich repeat-containing G-protein coupled receptor 5-positive (Lgr5+) stem cells reside at crypt bottoms of the small and large intestine. Small intestinal Paneth cells supply Wnt3, EGF, and Notch signals to neighboring Lgr5+ stem cells. Whereas the colon lacks Paneth cells, deep crypt secretory (DCS) cells are intermingled with Lgr5+ stem cells at crypt bottoms. Here, we report regenerating islet-derived family member 4 (Reg4) as a marker of DCS cells. To investigate a niche function, we eliminated DCS cells by using the diphtheria-toxin receptor gene knocked into the murine Reg4 locus. Ablation of DCS cells results in loss of stem cells from colonic crypts and disrupts gut homeostasis and colon organoid growth. In agreement, sorted Reg4+ DCS cells promote organoid formation of single Lgr5+ colon stem cells. DCS cells can be massively produced from Lgr5+ colon stem cells in vitro by combined Notch inhibition and Wnt activation. We conclude that Reg4+ DCS cells serve as Paneth cell equivalents in the colon crypt niche.


2019 ◽  
Vol 317 (6) ◽  
pp. E1108-E1120 ◽  
Author(s):  
Manesh Chittezhath ◽  
Divya Gunaseelan ◽  
Xiaofeng Zheng ◽  
Riasat Hasan ◽  
Vanessa S. Y. Tay ◽  
...  

β-Cells respond to peripheral insulin resistance by first increasing circulating insulin during diabetes. Islet remodeling supports this compensation, but its drivers remain poorly understood. Infiltrating macrophages have been implicated in late-stage type 2 diabetes, but relatively little is known on islet resident macrophages, especially during compensatory hyperinsulinemia. We hypothesized that islet resident macrophages would contribute to islet vascular remodeling and hyperinsulinemia during diabetes, the failure of which results in a rapid progression to frank diabetes. We used chemical (clodronate), genetics (CD169-diphtheria toxin receptor mice), or antibody-mediated (colony-stimulating factor 1 receptor α) macrophage ablation methods in diabetic (db/db) and diet-induced models of compensatory hyperinsulinemia to investigate the role of macrophages in islet remodeling. We transplanted islets devoid of macrophages into naïve diabetic mice and assessed the impact on islet vascularization. With the use of the above methods, we showed that macrophage depletion significantly and consistently compromised islet remodeling in terms of size, vascular density, and insulin secretion capacity. Depletion of islet macrophages reduced VEGF-A secretion in both human and mouse islets ex vivo, and this functionally translated to delayed revascularization upon transplantation in vivo. We revealed that islet resident macrophages were associated with islet remodeling and increased insulin secretion during diabetes. This suggests utility in harnessing islet macrophages during this phase to promote islet vascularization, remodeling, and insulin secretion.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
R. Moreno ◽  
L. A. Rojas ◽  
Felip Vilardell Villellas ◽  
Vanessa Cervera Soriano ◽  
J. García-Castro ◽  
...  

Antitumor efficacy of systemically administered oncolytic adenoviruses (OAdv) is limited due to diverse factors such as liver sequestration, neutralizing interactions in blood, elimination by the immune system, and physical barriers in tumors. It is therefore of clinical relevance to improve OAdv bioavailability and tumor delivery. Among the variety of tumor-targeting strategies, the use of stem cells and specifically bone marrow-derived mesenchymal stem cells (BM-MSCs) is of particular interest due to their tumor tropism and immunomodulatory properties. Nonetheless, the invasive methods to obtain these cells, the low number of MSCs present in the bone marrow, and their restricted in vitro expansion represent major obstacles for their use in cancer treatments, pointing out the necessity to identify an alternative source of MSCs. Here, we have evaluated the use of menstrual blood-derived mesenchymal stem cells (MenSCs) as cell carriers for regional delivery of an OAdv in the tumor. Our results indicate that MenSCs can be isolated without invasive methods, they have an increased proliferation rate compared to BM-MSCs, and they can be efficiently infected with different serotype 5-based capsid-modified adenoviruses, leading to viral replication and release. In addition, our in vivo studies confirmed the tumor-homing properties of MenSCs after regional administration.


2018 ◽  
Vol 315 (2) ◽  
pp. G195-G205 ◽  
Author(s):  
Martin Stahl ◽  
Sarah Tremblay ◽  
Marinieve Montero ◽  
Wayne Vogl ◽  
Lijun Xia ◽  
...  

Paneth cells are a key subset of secretory epithelial cells found at the base of small intestinal crypts. Unlike intestinal goblet cells, which secrete the mucin Muc2, Paneth cells are best known for producing an array of antimicrobial factors. We unexpectedly identified Muc2 staining localized around Paneth cell granules. Electron microscopy (EM) confirmed an electron lucent halo around these granules, which was lost in Paneth cells from Muc2-deficient (−/−) mice. EM and immunostaining for lysozyme revealed that Muc2−/− Paneth cells contained larger, more densely packed granules within their cytoplasm, and we detected defects in the transcription of key antimicrobial genes in the ileal tissues of Muc2−/− mice. Enteroids derived from the small intestine of wild-type and Muc2−/− mice revealed phenotypic differences in Paneth cells similar to those seen in vivo. Moreover, lysozyme-containing granule release from Muc2−/− enteroid Paneth cells was shown to be impaired. Surprisingly, Paneth cells within human ileal and duodenal tissues were found to be Muc2 negative. Thus Muc2 plays an important role in murine Paneth cells, suggesting links in function with goblet cells; however human Paneth cells lack Muc2, highlighting that caution should be applied when linking murine to human Paneth cell functions. NEW & NOTEWORTHY We demonstrate for the first time that murine Paneth cell granules possess a halo comprised of the mucin Muc2. The presence of Muc2 exerts an impact on Paneth cell granule size and number and facilitates the release and dispersal of antimicrobials into the mucus layer. Interestingly, despite the importance of Muc2 in murine Paneth cell function, our analysis of Muc2 in human intestinal tissues revealed no trace of Muc2 expression by human Paneth cells.


2021 ◽  
Vol 118 (4) ◽  
pp. e2017432118
Author(s):  
Yalong Wang ◽  
Kaixin He ◽  
Baifa Sheng ◽  
Xuqiu Lei ◽  
Wanyin Tao ◽  
...  

RNA helicases play roles in various essential biological processes such as RNA splicing and editing. Recent in vitro studies show that RNA helicases are involved in immune responses toward viruses, serving as viral RNA sensors or immune signaling adaptors. However, there is still a lack of in vivo data to support the tissue- or cell-specific function of RNA helicases owing to the lethality of mice with complete knockout of RNA helicases; further, there is a lack of evidence about the antibacterial role of helicases. Here, we investigated the in vivo role of Dhx15 in intestinal antibacterial responses by generating mice that were intestinal epithelial cell (IEC)-specific deficient for Dhx15 (Dhx15 f/f Villin1-cre, Dhx15ΔIEC). These mice are susceptible to infection with enteric bacteria Citrobacter rodentium (C. rod), owing to impaired α-defensin production by Paneth cells. Moreover, mice with Paneth cell-specific depletion of Dhx15 (Dhx15 f/f Defensinα6-cre, Dhx15ΔPaneth) are more susceptible to DSS (dextran sodium sulfate)-induced colitis, which phenocopy Dhx15ΔIEC mice, due to the dysbiosis of the intestinal microbiota. In humans, reduced protein levels of Dhx15 are found in ulcerative colitis (UC) patients. Taken together, our findings identify a key regulator of Wnt-induced α-defensins in Paneth cells and offer insights into its role in the antimicrobial response as well as intestinal inflammation.


2020 ◽  
Author(s):  
Benjamin E. Mead ◽  
Kazuki Hattori ◽  
Lauren Levy ◽  
Marko Vukovic ◽  
Daphne Sze ◽  
...  

SummaryBarrier tissue epithelia play an essential role in maintaining organismal homeostasis, and changes in their cellular composition have been observed in multiple human diseases. Within the small intestinal epithelium, adult stem cells integrate diverse signals to regulate regeneration and differentiation, thereby establishing overall cellularity. Accordingly, directing stem cell differentiation could provide a tractable approach to alter the abundance or quality of specialized cells of the small intestinal epithelium, including the secretory Paneth, goblet, and enteroendocrine populations. Yet, to date, there has been a lack of suitable tools and rigorous approaches to identify biological targets and pharmacological agents that can modify epithelial composition to enable causal testing of disease-associated changes with novel therapeutic candidates. To empower the search for epithelia-modifying agents, we establish a first-of-its-kind high-throughput phenotypic organoid screen. We demonstrate the ability to screen thousands of samples and uncover biological targets and associated small molecule inhibitors which translate to in vivo. This approach is enabled by employing a functional, cell-type specific, scalable assay on an organoid model designed to represent the physiological cues of in vivo Paneth cell differentiation from adult intestinal stem cells. Further, we miniaturize and adapt the organoid culture system to enable automated plating and screening, thereby providing the ability to test thousands of samples. Strikingly, in our screen we identify inhibitors of the nuclear exporter Xpo1 modulate stem cell fate commitment by inducing a pan-epithelial stress response combined with an interruption of mitogen signaling in cycling intestinal progenitors, thereby significantly increasing the abundance of Paneth cells independent of known WNT and Notch differentiation cues. We extend our observation in vivo, demonstrating that oral administration of Xpo1 inhibitor KPT-330 at doses 1,000-fold lower than conventionally used in hematologic malignancies increases Paneth cell abundance. In total, we provide a framework to identify novel biological cues and therapeutic leads to rebalance intestinal stem cell differentiation and modulate epithelial tissue composition via high-throughput phenotypic screening in rationally-designed organoid model of differentiation.


2020 ◽  
Vol 3 (2) ◽  
pp. e201900515 ◽  
Author(s):  
Daiji Kiyozumi ◽  
Itsuko Nakano ◽  
Ryoko Sato-Nishiuchi ◽  
Satoshi Tanaka ◽  
Kiyotoshi Sekiguchi

The niche is a specialized microenvironment for tissue stem cells in vivo. It has long been emphasized that niche ECM molecules act on tissue stem cells to regulate their behavior, but the molecular entities of these interactions remain to be fully elucidated. Here, we report that laminin forms the in vivo ECM niche for trophoblast stem cells (TSCs), the tissue stem cells of the placenta. TSCs expressed fibronectin-binding, vitronectin-binding, and laminin-binding integrins, whereas the integrin ligands present in the TSC niche were collagen and laminin. Therefore, the only niche integrin ligand available for TSCs in vivo was laminin. Laminin promoted TSC adhesion and proliferation in vitro in an integrin binding–dependent manner. Importantly, when the integrin-binding ability of laminin was genetically ablated in mice, the size of the TSC population was significantly reduced compared with that in control mice. The present findings underscore an ECM niche function of laminin to support tissue stem cell maintenance in vivo.


2021 ◽  
Vol 118 (33) ◽  
pp. e2103676118
Author(s):  
José A. Gomez ◽  
Alan Payne ◽  
Richard E. Pratt ◽  
Conrad P. Hodgkinson ◽  
Victor J. Dzau

Cardiomyogenesis, the process by which the body generates cardiomyocytes, is poorly understood. We have recently shown that Sfrp2 promotes cardiomyogenesis in vitro. The objective of this study was to determine if Sfrp2 would similarly promote cardiomyogenesis in vivo. To test this hypothesis, we tracked multipotent cKit(+) cells in response to Sfrp2 treatment. In control adult mice, multipotent cKit(+) cells typically differentiated into endothelial cells but not cardiomyocytes. In contrast, Sfrp2 switched the fate of these cells. Following Sfrp2 injection, multipotent cKit(+) cells differentiated solely into cardiomyocytes. Sfrp2-derived cardiomyocytes integrated into the myocardium and exhibited identical physiological properties to preexisting native cardiomyocytes. The ability of Sfrp2 to promote cardiomyogenesis was further supported by tracking EdU-labeled cells. In addition, Sfrp2 did not promote the formation of new cardiomyocytes when the cKit(+) cell population was selectively ablated in vivo using a diphtheria toxin receptor–diphtheria toxin model. Notably, Sfrp2-induced cardiomyogenesis was associated with significant functional improvements in a cardiac injury model. In summary, our study further demonstrates the importance of Sfrp2 in cardiomyogenesis.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Hongyan Tao ◽  
Xiaoniao Chen ◽  
Anbang Wei ◽  
Xianghe Song ◽  
Weiqiang Wang ◽  
...  

With their properties of self-renewal and differentiation, embryonic stem (ES) cells hold great promises for regenerative therapy. However, teratoma formation and ethical concerns of ES cells may restrict their potential clinical applications. Currently, parthenogenetic embryonic stem (pES) cells have attracted the interest of researchers for its self-renewing and pluripotent differentiation while eliciting less ethic concerns. In this study, we established a model with ES and pES cells both stably transfected with a double-fusion reporter gene containing renilla luciferase (Rluc) and red fluorescent protein (RFP) to analyze the mechanisms of teratoma formation. Transgenic Vegfr2-luc mouse, which expresses firefly luciferase (Fluc) under the promoter of vascular endothelial growth factor receptor 2 (Vegfr2-luc), was used to trace the growth of new blood vessel recruited by transplanted cells. Bioluminescence imaging (BLI) of Rluc/Fluc provides an effective tool in estimating the growth and angiogenesis of teratoma in vivo. We found that the tumorigenesis and angiogenesis capacity of ES cells were higher than those of pES cells, in which VEGF/VEGFR2 signal pathway plays an important role. In conclusion, pES cells have the decreased potential of teratoma formation but meanwhile have similar differentiating capacity compared with ES cells. These data demonstrate that pES cells provide an alternative source for ES cells with the risk reduction of teratoma formation and without ethical controversy.


Endocrinology ◽  
2014 ◽  
Vol 155 (12) ◽  
pp. 4964-4974 ◽  
Author(s):  
Liang-Yu Chen ◽  
Paula R. Brown ◽  
William B. Willis ◽  
Edward M. Eddy

Peritubular myoid (PM) cells surround the seminiferous tubule and together with Sertoli cells form the cellular boundary of the spermatogonial stem cell (SSC) niche. However, it remains unclear what role PM cells have in determining the microenvironment in the niche required for maintenance of the ability of SSCs to undergo self-renewal and differentiation into spermatogonia. Mice with a targeted disruption of the androgen receptor gene (Ar) in PM cells experienced a progressive loss of spermatogonia, suggesting that PM cells require testosterone (T) action to produce factors influencing SSC maintenance in the niche. Other studies showed that glial cell line-derived neurotrophic factor (GDNF) is required for SSC self-renewal and differentiation of SSCs in vitro and in vivo. This led us to hypothesize that T-regulated GDNF expression by PM cells contributes to the maintenance of SSCs. This hypothesis was tested using an adult mouse PM cell primary culture system and germ cell transplantation. We found that T induced GDNF expression at the mRNA and protein levels in PM cells. Furthermore, when thymus cell antigen 1-positive spermatogonia isolated from neonatal mice were cocultured with PM cells with or without T and transplanted to the testes of germ cell-depleted mice, the number and length of transplant-derived colonies was increased considerably by in vitro T treatment. These results support the novel hypothesis that T-dependent regulation of GDNF expression in PM cells has a significant influence on the microenvironment of the niche and SSC maintenance.


Sign in / Sign up

Export Citation Format

Share Document