scholarly journals Pyruvate dehydrogenase phosphatase catalytic subunit 2 limits Th17 differentiation

2018 ◽  
Vol 115 (37) ◽  
pp. 9288-9293 ◽  
Author(s):  
Michihito Kono ◽  
Nobuya Yoshida ◽  
Kayaho Maeda ◽  
Nicole E. Skinner ◽  
Wenliang Pan ◽  
...  

Th17 cells favor glycolytic metabolism, and pyruvate dehydrogenase (PDH) is the key bifurcation enzyme, which in its active dephosphorylated form advances the oxidative phosphorylation from glycolytic pathway. The transcriptional factor, inducible cAMP early repressor/cAMP response element modulator (ICER/CREM), has been shown to be induced in Th17 cells and to be overexpressed in CD4+ T cells from the patients with systemic lupus erythematosus (SLE). We found that glycolysis and lactate production in in vitro Th17-polarized T cells was reduced and that the expression of pyruvate dehydrogenase phosphatase catalytic subunit 2 (PDP2), an enzyme that converts the inactive PDH to its active form, and PDH enzyme activity were increased in Th17 cells from ICER/CREM-deficient animals. ICER was found to bind to the Pdp2 promoter and suppress its expression. Furthermore, forced expression of PDP2 in CD4+ cells reduced the in vitro Th17 differentiation, whereas shRNA-based suppression of PDP2 expression increased in vitro Th17 differentiation and augmented experimental autoimmune encephalomyelitis. At the translational level, PDP2 expression was decreased in memory Th17 cells from patients with SLE and forced expression of PDP2 in CD4+ T cells from lupus-prone MRL/lpr mice and patients with SLE suppressed Th17 differentiation. These data demonstrate the direct control of energy production during Th17 differentiation in health and disease by the transcription factor ICER/CREM at the PDH metabolism bifurcation level.

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Rie Takagi ◽  
Masaaki Kawano ◽  
Kazuyuki Nakagome ◽  
Kumiko Hashimoto ◽  
Takehiro Higashi ◽  
...  

Allergic airway inflammation is generally considered to be a Th2-type immune response. Recent studies, however, have demonstrated that Th17-type immune responses also play important roles in this process, particularly in the pathogenesis of neutrophilic airway inflammation, a hallmark of severe asthma. We scrutinized several Kampo extracts that reportedly exhibit anti-inflammatory activity by usingin vitrodifferentiation system of human and mouse naïve T cells. We found that hange-shashin-to (HST) and oren-gedoku-to (OGT) possess inhibitory activity for Th17 responsesin vitro. Indeed, wogonin and berberine, major components common to HST and OGT, exhibit Th17-inhibitory activities in both murine and human systemsin vitro. We therefore evaluated whether wogonin suppresses OVA-induced neutrophilic airway inflammation in OVA TCR-transgenic DO11.10 mice. Consequently, oral administration of wogonin significantly improved OVA-induced neutrophilic airway inflammation. Wogonin suppressed the differentiation of naïve T cells to Th17 cells, while showing no effects on activated Th17 cells.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Xuebin Qu ◽  
Jingjing Han ◽  
Ying Zhang ◽  
Xingqi Wang ◽  
Hongbin Fan ◽  
...  

Abstract Background Toll-like receptor 4 (TLR4) is well known for activating the innate immune system; however, it is also highly expressed in adaptive immune cells, such as CD4+ T-helper 17 (Th17) cells, which play a key role in multiple sclerosis (MS) pathology. However, the function and governing mechanism of TLR4 in Th17 remain unclear. Methods The changes of TLR4 in CD4+ T cells from MS patients and experimental autoimmune encephalomyelitis (EAE) mice were tested. TLR4-deficient (TLR4−/−) naïve T cells were induced in vitro and transferred into Rag1−/− mice to measure Th17 differentiation and EAE pathology. DNA sequence analyses combining with deletion fragments and mutation analyses, chromatin immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA) were used to explore the mechanism of TLR4 signaling pathway in regulating Th17 differentiation. Results The levels of TLR4 were increased in CD4+ Th17 cells both from MS patients and EAE mice, as well as during Th17 differentiation in vitro. TLR4−/− CD4+ naïve T cells inhibited their differentiation into Th17, and transfer of TLR4−/− CD4+ naïve T cells into Rag1−/− mice was defective in promoting EAE, characterized by less demyelination and Th17 infiltration in the spinal cord. TLR4 signal enhanced Th17 differentiation by activating RelA, downregulating the expression of miR-30a, a negative regulator of Th17 differentiation. Inhibition of RelA activity increased miR-30a level, but decreased Th17 differentiation rate. Furthermore, RelA directly regulated the expression of miR-30a via specific binding to a conserved element of miR-30a gene. Conclusions TLR4−/− CD4+ naïve T cells are inadequate in differentiating to Th17 cells both in vitro and in vivo. TLR4-RelA-miR-30a signal pathway regulates Th17 differentiation via direct binding of RelA to the regulatory element of miR-30a gene. Our results indicate modulating TLR4-RelA-miR-30a signal in Th17 may be a therapeutic target for Th17-mediated neurodegeneration in neuroinflammatory diseases.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1660 ◽  
Author(s):  
Claudia Terraza-Aguirre ◽  
Mauricio Campos-Mora ◽  
Roberto Elizondo-Vega ◽  
Rafael A. Contreras-López ◽  
Patricia Luz-Crawford ◽  
...  

Mesenchymal stem cells (MSCs) exhibit potent immunoregulatory abilities by interacting with cells of the adaptive and innate immune system. In vitro, MSCs inhibit the differentiation of T cells into T helper 17 (Th17) cells and repress their proliferation. In vivo, the administration of MSCs to treat various experimental inflammatory and autoimmune diseases, such as rheumatoid arthritis, type 1 diabetes, multiple sclerosis, systemic lupus erythematosus, and bowel disease showed promising therapeutic results. These therapeutic properties mediated by MSCs are associated with an attenuated immune response characterized by a reduced frequency of Th17 cells and the generation of regulatory T cells. In this manuscript, we review how MSC and Th17 cells interact, communicate, and exchange information through different ways such as cell-to-cell contact, secretion of soluble factors, and organelle transfer. Moreover, we discuss the consequences of this dynamic dialogue between MSC and Th17 well described by their phenotypic and functional plasticity.


2016 ◽  
Vol 76 (4) ◽  
pp. 740-747 ◽  
Author(s):  
Cristina Rozo ◽  
Yurii Chinenov ◽  
Reena Khianey Maharaj ◽  
Sanjay Gupta ◽  
Laura Leuenberger ◽  
...  

ObjectivesDeregulated production of interleukin (IL)-17 and IL-21 contributes to the pathogenesis of autoimmune disorders such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Production of IL-17 and IL-21 can be regulated by ROCK2, one of the two Rho kinases. Increased ROCK activation was previously observed in an SLE cohort. Here, we evaluated ROCK activity in a new SLE cohort, and an RA cohort, and assessed the ability of distinct inhibitors of the ROCK pathway to suppress production of IL-17 and IL-21 by SLE T cells or human Th17 cells.MethodsROCK activity in peripheral blood mononuclear cells (PBMCs) from 29 patients with SLE, 31 patients with RA and 28 healthy controls was determined by ELISA. SLE T cells or in vitro-differentiated Th17 cells were treated with Y27632 (a pan-ROCK inhibitor), KD025 (a selective ROCK2 inhibitor) or simvastatin (which inhibits RhoA, a major ROCK activator). ROCK activity and IL-17 and IL-21 production were assessed. The transcriptional profile altered by ROCK inhibitors was evaluated by NanoString technology.ResultsROCK activity levels were significantly higher in patients with SLE and RA than healthy controls. Th17 cells exhibited high ROCK activity that was inhibited by Y27632, KD025 or simvastatin; each also decreased IL-17 and IL-21 production by purified SLE T cells or Th17 cells. Immune profiling revealed both overlapping and distinct effects of the different ROCK inhibitors.ConclusionsROCK activity is elevated in PBMCs from patients with SLE and RA. Production of IL-17 and IL-21 by SLE T cells or Th17 cells can furthermore be inhibited by targeting the RhoA-ROCK pathway via both non-selective and selective approaches.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tao Cheng ◽  
Shuai Ding ◽  
Shanshan Liu ◽  
Xiaojing Li ◽  
Xiaojun Tang ◽  
...  

Resolvin D1 (RvD1) prompts inflammation resolution and regulates immune responses. We explored the effect of RvD1 on systemic lupus erythematosus (SLE) and investigated the correlation between RvD1 and Treg/Th17 imbalance, which is one of the major factors contributing to the pathogenesis of disease. SLE patients and healthy controls were recruited to determine plasma RvD1 levels. MRL/lpr lupus model was used to verify rescue of the disease phenotype along with Treg/Th17 ratio. Purified naive CD4+ T cells were used to study the effect of RvD1 on Treg/Th17 differentiation in vitro. Furthermore, small RNA Sequencing and transfection were performed successively to investigate downstream microRNAs. The result showed that the RvD1 level was significantly lower in active SLE patients compared with inactive status and controls. Moreover, The SLE disease activity index (SLEDAI) score had a significant negative correlation with RvD1 level. As expected, RvD1 treatment ameliorated disease phenotype and inflammatory response, improved the imbalanced Treg/Th17 in MRL/lpr mice. In addition, RvD1 increased Treg while reduced Th17 differentiation in vitro. Furthermore, miR-30e-5p was verified to modulate the Treg/Th17 differentiation from naïve CD4+ T cells as RvD1 downstream microRNA. In conclusion, RvD1 effectively ameliorates SLE progression through up-regulating Treg and down-regulating Th17 cells via miR-30e-5p.


2018 ◽  
Vol 32 ◽  
pp. 205873841877872 ◽  
Author(s):  
Jin-Sil Park ◽  
Sung-Min Kim ◽  
Sun-Hee Hwang ◽  
Si-Young Choi ◽  
Ji Ye Kwon ◽  
...  

Systemic lupus erythematosus (SLE; lupus) is a prototypical autoimmune disease characterized by circulating autoantibodies to nuclear antigens and immune complex deposition, resulting in damage to target organs. To investigate the effects of tacrolimus (TAC) on effector T cells and B cells, we examined its involvement in the development of effector T cells, germinal center (GC) B cells, and plasma cells in an in vitro system using wild-type (WT) and lupus-prone mice. The population of T helper (Th) 1, Th2, and Th17 cells interleukin (IL)-17-producing T (Th17) cells and the production of interferon-γ and interleukin-17A IL-17A were suppressed by TAC. TAC also reduced the population of regulatory T (Treg) cells; however, a combination treatment with the signal transducer and activator of transcription 3 (STAT3) inhibitor STA-21 promoted the population of Treg cells. TAC also suppressed the populations of GC B cells and plasma cells synergistically with STA-21. These findings suggest that the application of TAC with a STAT3 signal inhibitor may provide benefits in SLE treatment.


2016 ◽  
Vol 213 (11) ◽  
pp. 2489-2501 ◽  
Author(s):  
Yasuhiro Kishi ◽  
Takaaki Kondo ◽  
Sheng Xiao ◽  
Nir Yosef ◽  
Jellert Gaublomme ◽  
...  

Th17 cells are key players in defense against pathogens and maintaining tissue homeostasis, but also act as critical drivers of autoimmune diseases. Based on single-cell RNA-seq profiling of pathogenic versus nonpathogenic Th17 cells, we identified protein C receptor (PROCR) as a cell surface molecule expressed in covariance with the regulatory module of Th17 cells. Although PROCR expression in T cells was controlled by the cooperative action of the Th17 lineage-specific transcription factors RORγt, IRF4, and STAT3, PROCR negatively regulated Th17 differentiation. CD4+ T cells from PROCR low expressor mutant mice readily differentiated into Th17 cells, whereas addition of the PROCR ligand, activated protein C, inhibited Th17 differentiation in vitro. In addition, PROCR acted as a negative regulator of Th17 pathogenicity in that it down-regulated expression of several pathogenic signature genes, including IL-1 and IL-23 receptors. Furthermore, T cell–specific deficiency of PROCR resulted in the exacerbation of experimental autoimmune encephalomyelitis (EAE) and higher frequencies of Th17 cell in vivo, indicating that PROCR also inhibits pathogenicity of Th17 cells in vivo. PROCR thus does not globally inhibit Th17 responses but could be targeted to selectively inhibit proinflammatory Th17 cells.


2018 ◽  
Vol 45 (6) ◽  
pp. 818-826 ◽  
Author(s):  
Ji Yang ◽  
Xue Yang ◽  
Jie Yang ◽  
Ming Li

Objective.Hydroxychloroquine (HCQ) is a commonly used medicine for the treatment of systemic lupus erythematosus (SLE), and Th17 cells are closely related to the pathogenesis of SLE. However, the role and mechanism of HCQ on Th17 cell differentiation in SLE is not clearly understood. Here, we investigate the effect of HCQ on Th17 cell differentiation bothin vitroand in patients with SLE.Methods.Twenty-five patients with SLE were divided into 2 treatment groups: prednisone alone and HCQ plus prednisone. Interleukin 17 (IL-17) expression was analyzed by ELISA and real-time (RT)-PCR. Th17 were measured in patients with SLE by flow cytometry before and after HCQ treatment.In vitro, naive T cells were cultured in Th17-inducing conditions with or without HCQ. Cell differentiation and IL-17 expression were analyzed. Finally, transcriptome sequencing identified differential gene expression between naive T cells and induced Th17 cells.Results.In patients, HCQ plus prednisone treatment inhibited IL-17 production, gene expression, and Th17 cell differentiation.In vitro, HCQ inhibited Th17 cell proliferation and differentiation, as well as IL-17 production. Five microRNA were significantly different in Th17 cells compared with naive T cells, and HCQ treatment reversed this effect.In vivo, microRNA-590 (miR-590) was verified and was significantly decreased in Th17 cells, compared with naive T cells from lupus-prone mice. Moreover, miR-590 was increased in patients treated with HCQ plus prednisone.Conclusion.HCQ inhibited Th17 cell differentiation and IL-17 production bothin vitroand in patients with SLE. Our study provides additional evidence for HCQ as a treatment for SLE.


2018 ◽  
Author(s):  
Yajing Gao ◽  
Krystin Deason ◽  
Aakanksha Jain ◽  
Ricardo A Irizarry-Caro ◽  
Igor Dozmorov ◽  
...  

One sentence summaryOur study revealed that DCs shape distinct pathogen-specific CD4 T cell transcriptome and from which, we discovered an unexpected role for T-cell-intrinsic caspase-1 in promoting Th17 differentiation.ABSTRACTDendritic cells (DCs) are critical for priming and differentiation of pathogen-specific CD4 T cells. However, to what extent innate cues from DCs dictate transcriptional changes in T cells leading to effector heterogeneity remains elusive. Here we have used an in vitro approach to prime naïve CD4 T cells by DCs stimulated with distinct pathogens. We have found that such pathogen-primed CD4 T cells express unique transcriptional profiles dictated by the nature of the priming pathogen. In contrast to cytokine-polarized Th17 cells that display signatures of terminal differentiation, pathogen-primed Th17 cells maintain a high degree of heterogeneity and plasticity. Further analysis identified caspase-1 as one of the genes upregulated only in pathogen-primed Th17 cells but not in cytokine-polarized Th17 cells. T-cell-intrinsic caspase-1, independent of its function in inflammasome, is critical for inducing optimal pathogen-driven Th17 responses. More importantly, T cells lacking caspase-1 fail to induce colitis following transfer into RAG-deficient mice, further demonstrating the importance of caspase-1 for the development of pathogenic Th17 cells in vivo. This study underlines the importance of DC-mediated priming in identifying novel regulators of T cell differentiation.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 505-505
Author(s):  
Marco Rossi ◽  
Emanuela Altomare ◽  
Cirino Botta ◽  
Maria Eugenia Gallo Cantafio ◽  
Marco Gaspari ◽  
...  

Background Bone disease (BD) is a hallmark of multiple myeloma (MM) and is characterized by severe skeleton damage, reduced quality of life and overall survival (1-2). Several findings indicated that IL-17 producing CD4+ T cells (Th17) play a central role in triggering MMBD and support MM cell growth mainly by IL-17 production. There is compelling evidence that miR-21 is a central player in Th17 effector functions. Our preliminary data have shown that miR-21 is highly upregulated in MM-Th17 isolated from patients with active BD as compared to MM with no active BD and controls. We found that inhibition of miR-21 in naive T cells (miR-21i-T cells) impaired differentiation towards Th17 in vitro, by reducing interleukin (IL)-17, IL-22, RANKL and RORC, leading to abrogation of osteoclast (OCL) bone resorption. Aims Based on these premises, we sought to explore miR-21 related underlying molecular networks that support pathogenic Th17 differentiation and function. As miRNAs may exert direct and indirect effects on gene expression and at post-transcriptional level, we performed a global head-to-head comparison by RNA-seq and proteomic -phosphoproteomic analysis on miR-21i-Th17. Then, we recapitulated and validated our findings in NOD/SCID gNULL mice, injected intratibially with miR-21i-T cells and MM cells. Methods RNAseq and proteomic/phosphoproteomic assays have been performed on in vitro differentiated Th17 cells originated from scramble control (SC) or miR-21i transfected naïve T cells (SC-Th17 and miR-21i-Th17 respectively) from 3 healthy donors through MARS-seq protocol adapted for bulk RNA and proteome/phosphoproteome analysis . Data have been analyzed through R by using different packages including limma, DESEQ2 and pheatmap. To perfom global proteome/phosphoproteome analysis, we conducted a mass spectrometry study of phosphopeptides protein extract from SC-Th17 and miR-21i-Th17, enriched using SCX-IMAC/TiO2. High-resolution LC-Ms/MS data were processed using Proteome Discoverer software Results In the presence of miR-21i, we found 109 upregulated and 22 downregulated proteins in the global proteome analysis of Th17 cells, while 90 and 18 phosphoproteins were up and down modulated, respectively. Paired analysis showed that 46 proteins are modulated in expression but not in phosphorylation, 23 proteins are modulated in phosphorylation but not in expression, while 85 proteins are modulated in both conditions. These data suggest that selective miRNA modulation interferes with a specific and limited group of proteins/phosphoproteins according to cell type and despite predicted pleiotropic miRNA activity. To understand whether miR-21i-Th17 undergo a "molecular reprogramming", we evaluated gene expression by RNA seq Analysis of miR-21-related molecular pathways in Th17 cells and found upregulation of STAT-1/-5a-5b, downregulation of STAT-3 and redirection of Th17 to Th1/activated like cells as shown by a pair-to-pair RNAseq and proteome/phosphoproteome analysis. These data indicate that miR-21 plays a central role in driving Th17 differentiation and function in a proinflammatory milieu such as MM-Bone marrow microenvironment (BMM). However, when miR-21 activity is strongly counteracted, pathogenic Th17 can switch to a Th1 like phenotype (STAT 1 dependent gene/protein upregulation). This switch may partly explain the attenuation of MMBD observed in vitro. To confirm our observation in vivo, we injected intratibially miR-21i exposed- or scramble miR (SC) exposed-naïve CD4+ T cells together with MM cells into gamma null SCID mice. We observed that mice injected with SC CD4+ naïve T cells presented severe local skeleton damage, while bone structure was preserved in miR-21i naïve CD4+ T cells injected mice. Conclusions Our data highlight the relevance of miR-21 in supporting Th17 mediated MMBD onset and progression. The possibility to "reprogram" MM Th17 by miR-21 modulation opens a new avenue to develop miR-21 targeting therapeutic strategies to counteract BMM-dependent MM development and related-BD. Figure Disclosures Paiva: Amgen, Bristol-Myers Squibb, Celgene, Janssen, Merck, Novartis, Roche, and Sanofi; unrestricted grants from Celgene, EngMab, Sanofi, and Takeda; and consultancy for Celgene, Janssen, and Sanofi: Consultancy, Honoraria, Research Funding, Speakers Bureau.


Sign in / Sign up

Export Citation Format

Share Document