scholarly journals Anaphase-promoting complex/cyclosome regulates RdDM activity by degrading DMS3 in Arabidopsis

2019 ◽  
Vol 116 (9) ◽  
pp. 3899-3908 ◽  
Author(s):  
Songxiao Zhong ◽  
Yifeng Xu ◽  
Chaoyi Yu ◽  
Xiaotuo Zhang ◽  
Lei Li ◽  
...  

During RNA-directed DNA methylation (RdDM), the DDR complex, composed of DRD1, DMS3, and RDM1, is responsible for recruiting DNA polymerase V (Pol V) to silence transposable elements (TEs) in plants. However, how the DDR complex is regulated remains unexplored. Here, we show that the anaphase-promoting complex/cyclosome (APC/C) regulates the assembly of the DDR complex by targeting DMS3 for degradation. We found that a substantial set of RdDM loci was commonly de-repressed in apc/c and pol v mutants, and that the defects in RdDM activity resulted from up-regulated DMS3 protein levels, which finally caused reduced Pol V recruitment. DMS3 was ubiquitinated by APC/C for degradation in a D box-dependent manner. Competitive binding assays and gel filtration analyses showed that a proper level of DMS3 is critical for the assembly of the DDR complex. Consistent with the importance of the level of DMS3, overaccumulation of DMS3 caused defective RdDM activity, phenocopying the apc/c and dms3 mutants. Moreover, DMS3 is expressed in a cell cycle-dependent manner. Collectively, these findings provide direct evidence as to how the assembly of the DDR complex is regulated and uncover a safeguarding role of APC/C in the regulation of RdDM activity.

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Nicole F. Robichaud ◽  
Jeanette Sassine ◽  
Margaret J. Beaton ◽  
Vett K. Lloyd

Daphnids are fresh water microcrustaceans, many of which follow a cyclically parthenogenetic life cycle. Daphnia species have been well studied in the context of ecology, toxicology, and evolution, but their epigenetics remain largely unexamined even though sex determination, the production of sexual females and males, and distinct adult morphological phenotypes, are determined epigenetically. Here, we report on the characterization of histone modifications in Daphnia. We show that a number of histone H3 and H4 modifications are present in Daphnia embryos and histone H3 dimethylated at lysine 4 (H3K4me2) is present nonuniformly in the nucleus in a cell cycle-dependent manner. In addition, this histone modification, while present in blastula and gastrula cells as well as the somatic cells of adults, is absent or reduced in oocytes and nurse cells. Thus, the epigenetic repertoire of Daphnia includes modified histones and as these epigenetic forces act on a genetically homogeneous clonal population Daphnia offers an exceptional tool to investigate the mechanism and role of epigenetics in the life cycle and development of an ecologically important species.


Development ◽  
1996 ◽  
Vol 122 (7) ◽  
pp. 2199-2206 ◽  
Author(s):  
O.M. McGuinness ◽  
R.B. Moreton ◽  
M.H. Johnson ◽  
M.J. Berridge

On fertilisation of mouse oocytes, the fusing spermatozoon triggers a series of repetitive calcium (Ca2+) spikes. The Ca2+ spikes seem to be necessary for successful progression through the cell cycle and are regulated in a cell-cycle-dependent manner. The spikes appear to require the linkage of continuous Ca2+ influx to the periodic release of Ca2+ from intracellular stores by a process of Ca(2+)-induced Ca2+ release. The precise role of Ca2+ influx was explored using the manganese (Mn2+)-quench technique to monitor unidirectional cation influx into single mouse oocytes. There was a marked stimulation of cation influx associated closely with the upsweep of the first and subsequent fertilisation Ca2+ spikes. A smaller but significant increase in the rate of cation influx persisted in the interspike period in fertilised oocytes. Spike-associated entry was not as apparent in oocytes stimulated to spike repetitively by thimerosal or acetylcholine application. Instead, there was a continuous increase in cation influx underlying Ca2+ spiking which commenced with the onset of the first spike. Using the specific microsomal inhibitor thapsigargin and the Ca2+ ionophore ionomycin, we found evidence for a capacitative entry mechanism in mouse oocytes. We propose that the persistent influx of Ca2+ observed in response to all stimuli examined is controlled by a capacitative mechanism and sets the frequency of spiking by determining the time taken to refill the internal stores to a point where they are again sensitive enough to initiate the next spike.


2003 ◽  
Vol 23 (15) ◽  
pp. 5165-5173 ◽  
Author(s):  
Judit Garriga ◽  
Sabyasachi Bhattacharya ◽  
Joaquim Calbó ◽  
Renée M. Marshall ◽  
May Truongcao ◽  
...  

ABSTRACT CDK9 is a CDC2-related kinase and the catalytic subunit of the positive-transcription elongation factor b and the Tat-activating kinase. It has recently been reported that CDK9 is a short-lived protein whose levels are regulated during the cell cycle by the SCFSKP2 ubiquitin ligase complex (R. E. Kiernan et al., Mol. Cell. Biol. 21:7956-7970, 2001). The results presented here are in contrast to those observations. CDK9 protein levels remained unchanged in human cells entering and progressing through the cell cycle from G0, despite dramatic changes in SKP2 expression. CDK9 levels also remained unchanged in cells exiting from mitosis and progressing through the next cell cycle. Similarly, the levels of CDK9 protein did not change as cells exited the cell cycle and differentiated along various lineages. In keeping with these observations, the kinase activity associated with CDK9 was found to not be regulated during the cell cycle. We have also found that endogenous CDK9 is a very stable protein with a half-life (t 1/2) of 4 to 7 h, depending on the cell type. In contrast, when CDK9 is overexpressed, it is not stabilized and is rapidly degraded, with a t 1/2 of less than 1 h, depending on the level of expression. Treatment of cells with proteasome inhibitors blocked the degradation of short-lived proteins, such as p27, but did not affect the expression of endogenous CDK9. Ectopic overexpression of SKP2 led to reduction of p27 protein levels but had no effect on the expression of endogenous CDK9. Finally, downregulation of endogenous SKP2 gene expression by interfering RNA had no effect on CDK9 protein levels, whereas p27 protein levels increased dramatically. Therefore, the SCFSKP2 ubiquitin ligase does not regulate CDK9 expression in a cell cycle-dependent manner.


2005 ◽  
Vol 25 (5) ◽  
pp. 1900-1911 ◽  
Author(s):  
Anna Santamaría ◽  
Elisabeth Castellanos ◽  
Valentí Gómez ◽  
Patricia Benedit ◽  
Jaime Renau-Piqueras ◽  
...  

ABSTRACT PTOV1 is a mitogenic protein that shuttles between the nucleus and the cytoplasm in a cell cycle-dependent manner. It consists of two homologous domains arranged in tandem that constitute a new class of protein modules. We show here that PTOV1 interacts with the lipid raft protein flotillin-1, with which it copurifies in detergent-insoluble floating fractions. Flotillin-1 colocalized with PTOV1 not only at the plasma membrane but, unexpectedly, also in the nucleus, as demonstrated by immunocytochemistry and subcellular fractionation of endogenous and exogenous flotillin-1. Flotillin-1 entered the nucleus concomitant with PTOV1, shortly before the initiation of the S phase. Protein levels of PTOV1 and flotillin-1 oscillated during the cell cycle, with a peak in S. Depletion of PTOV1 significantly inhibited nuclear localization of flotillin-1, whereas depletion of flotillin-1 did not affect nuclear localization of PTOV1. Depletion of either protein markedly inhibited cell proliferation under basal conditions. Overexpression of PTOV1 or flotillin-1 strongly induced proliferation, which required their localization to the nucleus, and was dependent on the reciprocal protein. These observations suggest that PTOV1 assists flotillin-1 in its translocation to the nucleus and that both proteins are required for cell proliferation.


Open Biology ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 170204 ◽  
Author(s):  
Claudio Alfieri ◽  
Suyang Zhang ◽  
David Barford

The anaphase promoting complex or cyclosome (APC/C) is a large multi-subunit E3 ubiquitin ligase that orchestrates cell cycle progression by mediating the degradation of important cell cycle regulators. During the two decades since its discovery, much has been learnt concerning its role in recognizing and ubiquitinating specific proteins in a cell-cycle-dependent manner, the mechanisms governing substrate specificity, the catalytic process of assembling polyubiquitin chains on its target proteins, and its regulation by phosphorylation and the spindle assembly checkpoint. The past few years have witnessed significant progress in understanding the quantitative mechanisms underlying these varied APC/C functions. This review integrates the overall functions and properties of the APC/C with mechanistic insights gained from recent cryo-electron microscopy (cryo-EM) studies of reconstituted human APC/C complexes.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1083
Author(s):  
Adhirath Sikand ◽  
Malgorzata Jaszczur ◽  
Linda B. Bloom ◽  
Roger Woodgate ◽  
Michael M. Cox ◽  
...  

In the mid 1970s, Miroslav Radman and Evelyn Witkin proposed that Escherichia coli must encode a specialized error-prone DNA polymerase (pol) to account for the 100-fold increase in mutations accompanying induction of the SOS regulon. By the late 1980s, genetic studies showed that SOS mutagenesis required the presence of two “UV mutagenesis” genes, umuC and umuD, along with recA. Guided by the genetics, decades of biochemical studies have defined the predicted error-prone DNA polymerase as an activated complex of these three gene products, assembled as a mutasome, pol V Mut = UmuD’2C-RecA-ATP. Here, we explore the role of the β-sliding processivity clamp on the efficiency of pol V Mut-catalyzed DNA synthesis on undamaged DNA and during translesion DNA synthesis (TLS). Primer elongation efficiencies and TLS were strongly enhanced in the presence of β. The results suggest that β may have two stabilizing roles: its canonical role in tethering the pol at a primer-3’-terminus, and a possible second role in inhibiting pol V Mut’s ATPase to reduce the rate of mutasome-DNA dissociation. The identification of umuC, umuD, and recA homologs in numerous strains of pathogenic bacteria and plasmids will ensure the long and productive continuation of the genetic and biochemical journey initiated by Radman and Witkin.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yorick Janssens ◽  
Nathan Debunne ◽  
Anton De Spiegeleer ◽  
Evelien Wynendaele ◽  
Marta Planas ◽  
...  

AbstractQuorum sensing peptides (QSPs) are bacterial peptides produced by Gram-positive bacteria to communicate with their peers in a cell-density dependent manner. These peptides do not only act as interbacterial communication signals, but can also have effects on the host. Compelling evidence demonstrates the presence of a gut-brain axis and more specifically, the role of the gut microbiota in microglial functioning. The aim of this study is to investigate microglial activating properties of a selected QSP (PapRIV) which is produced by Bacillus cereus species. PapRIV showed in vitro activating properties of BV-2 microglia cells and was able to cross the in vitro Caco-2 cell model and reach the brain. In vivo peptide presence was also demonstrated in mouse plasma. The peptide caused induction of IL-6, TNFα and ROS expression and increased the fraction of ameboid BV-2 microglia cells in an NF-κB dependent manner. Different metabolites were identified in serum, of which the main metabolite still remained active. PapRIV is thus able to cross the gastro-intestinal tract and the blood–brain barrier and shows in vitro activating properties in BV-2 microglia cells, hereby indicating a potential role of this quorum sensing peptide in gut-brain interaction.


2006 ◽  
Vol 16 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Jean Schneikert ◽  
Annette Grohmann ◽  
Jürgen Behrens

2001 ◽  
Vol 114 (2) ◽  
pp. 413-422 ◽  
Author(s):  
Y.F. Inclan ◽  
E. Nogales

alphabeta-tubulin heterodimers self-assemble to form microtubules nucleated by gamma-tubulin in the cell. Gamma-tubulin is believed to recruit the alphabeta-tubulin dimers that form the minus ends of microtubules, but the molecular mechanism of this action remains a matter of heated controversy. Still less is known about the function and molecular interactions of delta-tubulin and epsilon-tubulin. delta-tubulin may seed the formation of the C triplet tubules in the basal bodies of Chlamydomonas and epsilon-tubulin is known to localize to the centrosome in a cell cycle-dependent manner. Using the structure of alphabeta tubulin as a model, we have analyzed the sequences of gamma-, delta- and epsilon-tubulin in regions corresponding to different polymerization interfaces in the tubulin alphabeta dimer. The sequence comparisons sometimes show clear conservation, pointing to similar types of contacts being functionally important for the new tubulin considered. Conversely, certain surfaces show marked differences that rule out equivalent interactions for non-microtubular tubulins. This sequence/structure analysis has led us to structural models of how these special tubulins may be involved in protein-protein contacts that affect microtubule self-assembly. delta-tubulin most likely interacts longitudinally with alpha-tubulin at the minus ends of microtubules, while epsilon-tubulin most likely binds to the plus end of beta-tubulin. Conservation of key residues in gamma-tubulin suggests that it is capable of longitudinal self-assembly. The implications for the protofilament and template models of nucleation are considered.


2016 ◽  
Vol 3 (12) ◽  
pp. 160578 ◽  
Author(s):  
Mohammad Soltani ◽  
Abhyudai Singh

Expression of many genes varies as a cell transitions through different cell-cycle stages. How coupling between stochastic expression and cell cycle impacts cell-to-cell variability (noise) in the level of protein is not well understood. We analyse a model where a stable protein is synthesized in random bursts, and the frequency with which bursts occur varies within the cell cycle. Formulae quantifying the extent of fluctuations in the protein copy number are derived and decomposed into components arising from the cell cycle and stochastic processes. The latter stochastic component represents contributions from bursty expression and errors incurred during partitioning of molecules between daughter cells. These formulae reveal an interesting trade-off: cell-cycle dependencies that amplify the noise contribution from bursty expression also attenuate the contribution from partitioning errors. We investigate the existence of optimum strategies for coupling expression to the cell cycle that minimize the stochastic component. Intriguingly, results show that a zero production rate throughout the cell cycle, with expression only occurring just before cell division, minimizes noise from bursty expression for a fixed mean protein level. By contrast, the optimal strategy in the case of partitioning errors is to make the protein just after cell division. We provide examples of regulatory proteins that are expressed only towards the end of the cell cycle, and argue that such strategies enhance robustness of cell-cycle decisions to the intrinsic stochasticity of gene expression.


Sign in / Sign up

Export Citation Format

Share Document