scholarly journals A rigorous measure of genome-wide genetic shuffling that takes into account crossover positions and Mendel’s second law

2019 ◽  
Vol 116 (5) ◽  
pp. 1659-1668 ◽  
Author(s):  
Carl Veller ◽  
Nancy Kleckner ◽  
Martin A. Nowak

Comparative studies in evolutionary genetics rely critically on evaluation of the total amount of genetic shuffling that occurs during gamete production. Such studies have been hampered by the absence of a direct measure of this quantity. Existing measures consider crossing-over by simply counting the average number of crossovers per meiosis. This is qualitatively inadequate, because the positions of crossovers along a chromosome are also critical: a crossover toward the middle of a chromosome causes more shuffling than a crossover toward the tip. Moreover, traditional measures fail to consider shuffling from independent assortment of homologous chromosomes (Mendel’s second law). Here, we present a rigorous measure of genome-wide shuffling that does not suffer from these limitations. We define the parameter r¯ as the probability that the alleles at two randomly chosen loci are shuffled during gamete production. This measure can be decomposed into separate contributions from crossover number and position and from independent assortment. Intrinsic implications of this metric include the fact that r¯ is larger when crossovers are more evenly spaced, which suggests a selective advantage of crossover interference. Utilization of r¯ is enabled by powerful emergent methods for determining crossover positions either cytologically or by DNA sequencing. Application of our analysis to such data from human male and female reveals that (i) r¯ in humans is close to its maximum possible value of 1/2 and that (ii) this high level of shuffling is due almost entirely to independent assortment, the contribution of which is ∼30 times greater than that of crossovers.

2017 ◽  
Author(s):  
Carl Veller ◽  
Nancy Kleckner ◽  
Martin A. Nowak

AbstractComparative studies in evolutionary genetics rely critically on evaluation of the total amount of genetic shuffling that occurs during gamete production. However, such studies have been ham-pered by the fact that there has been no direct measure of this quantity. Existing measures consider crossing over by simply counting the average number of crossovers per meiosis. This is qualitatively inadequate because the positions of crossovers along a chromosome are also critical: a crossover towards the middle of a chromosome causes more shuffling than a crossover towards the tip. More-over, traditional measures fail to consider shuffling from independent assortment of homologous chromosomes (Mendel’s second law). Here, we present a rigorous measure of genome-wide shuffling that does not suffer from these limitations. We define the parameter r̅ as the probability that the alleles at two randomly chosen loci will be shuffled in the production of a gamete. This measure can be decomposed into separate contributions from crossover number and position and from independent assortment. Intrinsic implications of this metric include the fact that r̅ is larger when crossovers are more evenly spaced, which suggests a novel selective advantage of crossover interference. Utilization of r̅ is enabled by powerful emergent methods for determining crossover positions, either cytologically or by DNA sequencing. Application of our analysis to such data from human male and female reveals that: (i) r̅ in humans is close to its maximum possible value of 1/2, (ii) this high level of shuffling is due almost entirely to independent assortment, whose contribution is ~30 times greater than that of crossovers.


Genetics ◽  
1998 ◽  
Vol 150 (3) ◽  
pp. 1199-1208 ◽  
Author(s):  
Juan M Vega ◽  
Moshe Feldman

Abstract The analysis of the pattern of isochromosome pairing allows one to distinguish factors affecting presynaptic alignment of homologous chromosomes from those affecting synapsis and crossing-over. Because the two homologous arms in an isochromosome are invariably associated by a common centromere, the suppression of pairing between these arms (intrachromosome pairing) would indicate that synaptic or postsynaptic events were impaired. In contrast, the suppression of pairing between an isochromosome and its homologous chromosome (interchromosome pairing), without affecting intrachromosome pairing, would suggest that homologous presynaptic alignment was impaired. We used such an isochromosome system to determine which of the processes associated with chromosome pairing was affected by the Ph1 gene of common wheat—the main gene that restricts pairing to homologues. Ph1 reduced the frequency of interchromosome pairing without affecting intrachromosome pairing. In contrast, intrachromosome pairing was strongly reduced in the absence of the synaptic gene Syn-B1. Premeiotic colchicine treatment, which drastically decreased pairing of conventional chromosomes, reduced interchromosome but not intrachromosome pairing. The results support the hypothesis that premeiotic alignment is a necessary stage for the regularity of meiotic pairing and that Ph1 relaxes this alignment. We suggest that Ph1 acts on premeiotic alignment of homologues and homeologues as a means of ensuring diploid-like meiotic behavior in polyploid wheat.


Genetics ◽  
1976 ◽  
Vol 82 (4) ◽  
pp. 605-627
Author(s):  
Etta Käfer

ABSTRACT To analyze mitotic recombination in translocation heterozygotes of A. nidulans two sets of well-marked diploids were constructed, homo- or heterozygous for the reciprocal translocations T1(IL;VIIR) or T2(IL;VIIIR) and heterozygous for selective markers on IL. It was found that from all translocation heterozygotes some of the expected mitotic crossover types could be selected. Such crossovers are monosomic for one translocated segment and trisomic for the other and recovery depends on the relative viabilities of these unbalanced types. The obtained segregants show characteristically reduced growth rates and conidiation dependent on sizes and types of mono- and trisomic segments, and all spontaneously produce normal diploid sectors. Such secondary diploid types either arose in one step of compensating crossing over in the other involved arm, or—more conspicuously—in two steps of nondisjunction via a trisomic intermediate.—In both of the analyzed translocations the segments translocated to IL were extremely long, while those translocated from IL were relatively short. The break in I for T1(I;VII) was located distal to the main selective marker in IL, while that of T2(I;VIII) had been mapped proximal but closely linked to it. Therefore, as expected, the selected primary crossover from the two diploids with T2(I;VIII) in coupling or in repulsion to the selective marker, showed the same chromosomal imbalance and poor growth. These could however be distinguished visually because they spontaneously produced different trisomic intermediates in the next step, in accordance with the different arrangement of the aneuploid segments. On the other hand, from diploids heterozygous for T1(I;VII) mitotic crossovers could only be selected when the selective markers were in coupling with the translocation; these crossovers were relatively well-growing and produced frequent secondary segregants of the expected trisomic, 2n+VII, type. For both translocations it was impossible to recover the reciprocal crossover types (which would be trisomic for the distal segments of I and monosomic for most of groups VII or VIII) presumably because these were too inviable to form conidia.—In addition to the selected segregants of expected types a variety of unexpected ones were isolated. The conditions of selection used favour visual detection of aneuploid types, even if these produce only a few conidial heads and are not at a selective advantage. For T2(I;VIII) these "non-selected" unbalanced segregants were mainly "reciprocal" crossovers of the same phenotype and imbalance as the selected ones. For T1(I;VII) two quite different types were obtained, both possibly originating with loss of the small VII-Itranslocation chromosome. One was isolated when the selective marker in repulsion to T1(I;VII) was used and, without being homo- or hemizygous for the selective marker, it produced stable sectors homozygous for this marker. The other was obtained from both coupling and repulsion diploids and showed a near-diploid genotype; it produced practically only haploid stable sectors of the type expected from monosomics, 2n-1 for the short translocation chromosome.


1972 ◽  
Vol 14 (2) ◽  
pp. 397-401 ◽  
Author(s):  
Kathleen Church

Chromosome behaviour occurring from premeiotic DNA synthesis to leptotene of meiosis is described for both males (spermatogenesis) and females (oogenesis) in the grasshopper Melanoplus femur-rubrum. These events include a period of chromosome spiralization and contraction following premeiotic DNA synthesis and prior to leptotene. The diploid complement of chromosomes becomes visible in both sexes. No pairing between homologous chromosomes or chiasmata are observed in either sex. The results suggest that synapsis and crossing over must occur following preleptotene spiralization during spermatogenesis and oogenesis in this grasshopper.


Blood ◽  
2008 ◽  
Vol 112 (2) ◽  
pp. 406-414 ◽  
Author(s):  
Tomoyuki Sawado ◽  
Jessica Halow ◽  
Hogune Im ◽  
Tobias Ragoczy ◽  
Emery H. Bresnick ◽  
...  

Abstract Genome-wide analyses of the relationship between H3 K79 dimethylation and transcription have revealed contradictory results. To clarify this relationship at a single locus, we analyzed expression and H3 K79 modification levels of wild-type (WT) and transcriptionally impaired β-globin mutant genes during erythroid differentiation. Analysis of fractionated erythroid cells derived from WT/Δ locus control region (LCR) heterozygous mice reveals no significant H3 K79 dimethylation of the β-globin gene on either allele prior to activation of transcription. Upon transcriptional activation, H3 K79 di-methylation is observed along both WT and ΔLCR alleles, and both alleles are located in proximity to H3 K79 dimethylation nuclear foci. However, H3 K79 di-methylation is significantly increased along the ΔLCR allele compared with the WT allele. In addition, analysis of a partial LCR deletion mutant reveals that H3 K79 dimethylation is inversely correlated with β-globin gene expression levels. Thus, while our results support a link between H3 K79 dimethylation and gene expression, high levels of this mark are not essential for high level β-globin gene transcription. We propose that H3 K79 dimethylation is destabilized on a highly transcribed template.


2017 ◽  
Author(s):  
Sabrina Z. Jan ◽  
Aldo Jongejan ◽  
Cindy M. Korver ◽  
Saskia K. M. van Daalen ◽  
Ans M. M. van Pelt ◽  
...  

To prevent chromosomal aberrations to be transmitted to the offspring, strict meiotic checkpoints are in place to remove aberrant spermatocytes. However, in about 1% of all males these checkpoints cause complete meiotic arrest leading to azoospermia and subsequent infertility. We here unravel two clearly distinct meiotic arrest mechanisms that act during the prophase of human male meiosis. Type I arrested spermatocytes display severe asynapsis of the homologous chromosomes, disturbed XY-body formation and increased expression of the Y-chromosome encoded gene ZFY and seem to activate a DNA damage pathway leading to induction of p63 mediated spermatocyte elimination. Type II arrested spermatocytes display normal chromosome synapsis, normal XY-body morphology and meiotic crossover formation but have a lowered expression of several cell cycle regulating genes and fail to properly silence the X-chromosome encoded gene ZFX. Discovery and understanding of these meiotic arrest mechanisms increases our knowledge on how genomic stability is guarded during human germ cell development.


2021 ◽  
Author(s):  
YIsell Farahani-Tafreshi ◽  
Chun Wei ◽  
Peilu Gan ◽  
Jenya Daradur ◽  
C. Daniel Riggs ◽  
...  

Meiotic homologous chromosomes pair up and undergo crossing over. In many eukaryotes both intimate pairing and crossing over require the induction of double stranded breaks (DSBs) and subsequent repair via Homologous Recombination (HR). In these organisms, two key proteins are the recombinases RAD51 and DMC1. Recombinase-modulators HOP2 and MND1 have been identified as proteins that assist RAD51 and DMC1 and are needed to promote stabilized pairing. We have probed the nature of the genetic lesions seen in hop2 mutants and looked at the role of HOP2 in the fidelity of genetic exchanges. Using γH2AX as a marker for unrepaired DSBs we found that hop2-1 and mnd1 mutants have different appearance/disappearance for DSBs than wild type, but all DSBs are repaired by mid-late pachytene. Therefore, the bridges and fragments seen from metaphase I onward are due to mis-repaired DSBs, not unrepaired ones. Studying Arabidopsis haploid meiocytes we found that wild type haploids produced the expected five univalents, but hop2-1 haploids suffered many illegitimate exchanges that were stable enough to produce bridged chromosomes during segregation. Our results suggest that HOP2 has a significant active role in preventing nonhomologous associations. We also found evidence that HOP2 plays a role in preventing illegitimate exchanges during repair of radiation-induced DSBs in rapidly dividing petal cells. Thus, HOP2 plays both a positive role in promoting homologous chromosome synapsis and a separable role in preventing nonhomologous chromosome exchanges. Possible mechanisms for this second important role are discussed.


2020 ◽  
Author(s):  
Cheng Cheng Ruan ◽  
Zhe Chen ◽  
Fu Chu Hu ◽  
Xiang He Wang ◽  
Li Jun Guo ◽  
...  

AbstractThe B3 superfamily is a plant-specific family, which involves in growth and development process. By now, the identification of B3 superfamily in pineapple (Ananas comosus) has not reported. In this study, 57 B3 genes were identified and further phylogenetically classified into five subfamilies, all genes contained B3 domain. Chromosomal localization analysis revealed that 54 of 57 AcB3 genes were located on 21 chromosomes.Collinearity analysis indicated that the segmental duplication was the main event in the evolution of B3 gene superfamily and most of them were under purifying selection. Moreover, there were 7 and 39 pairs of orthologous B3s were identified between pineapple and Arabidopsis or rice, respectively, which indicated the closer genetic relationship between pineapple and rice. Most genes had cis-element of abscisic acid, ethylene, MeJA, light, and abiotic stress. qRT-PCR showed that the expression level of most AcB3 genes were up-regulated within 1 d after ethephon treatment and expressed high level in flower bud differentiation period in stem apex. This study provide a comprehensive understanding of AcB3s and a basis for future molecular studies of ethephon induced pineapple flowering.


2020 ◽  
Author(s):  
Nicholas C Palmateer ◽  
Kyle Tretina ◽  
Joshua Orvis ◽  
Olukemi O Ifeonu ◽  
Jonathan Crabtree ◽  
...  

AbstractTheileria parva is an economically important, intracellular, tick-transmitted parasite of cattle. A live vaccine against the parasite is effective against challenge from cattle-transmissible T. parva but not against genotypes originating from the African Cape buffalo, a major wildlife reservoir, prompting the need to characterize genome-wide variation within and between cattle- and buffalo-associated T. parva populations. Here, we describe a capture-based target enrichment approach that enables, for the first time, de novo assembly of nearly complete T. parva genomes derived from infected host cell lines. This approach has exceptionally high specificity and sensitivity and is successful for both cattle- and buffalo-derived T. parva parasites. De novo genome assemblies generated for cattle genotypes differ from the reference by ∼54K single nucleotide polymorphisms (SNPs) throughout the 8.31 Mb genome, an average of 6.5 SNPs/kb. We report the first buffalo-derived T. parva genome, which is larger than the genome from the reference, cattle-derived, Muguga strain. The average non-synonymous nucleotide diversity (πN) per gene, between buffalo-derived T. parva and the Muguga strain, was 1.3%. This remarkably high level of genetic divergence is supported by an average FST, genome-wide, of 0.44, reflecting a degree of genetic differentiation between cattle- and buffalo-derived T. parva parasites more commonly seen between, rather than within, species, with clear implications for vaccine development. The DNA capture approach used provides clear advantages over alternative T. parva DNA enrichment methods used previously and enables in-depth comparative genomics in this apicomplexan parasite.


Sign in / Sign up

Export Citation Format

Share Document