scholarly journals Gain control of saccadic eye movements is probabilistic

2019 ◽  
Vol 116 (32) ◽  
pp. 16137-16142 ◽  
Author(s):  
Matteo Lisi ◽  
Joshua A. Solomon ◽  
Michael J. Morgan

Saccades are rapid eye movements that orient the visual axis toward objects of interest to allow their processing by the central, high-acuity retina. Our ability to collect visual information efficiently relies on saccadic accuracy, which is limited by a combination of uncertainty in the location of the target and motor noise. It has been observed that saccades have a systematic tendency to fall short of their intended targets, and it has been suggested that this bias originates from a cost function that overly penalizes hypermetric errors. Here, we tested this hypothesis by systematically manipulating the positional uncertainty of saccadic targets. We found that increasing uncertainty produced not only a larger spread of the saccadic endpoints but also more hypometric errors and a systematic bias toward the average of target locations in a given block, revealing that prior knowledge was integrated into saccadic planning. Moreover, by examining how variability and bias covaried across conditions, we estimated the asymmetry of the cost function and found that it was related to individual differences in the additional time needed to program secondary saccades for correcting hypermetric errors, relative to hypometric ones. Taken together, these findings reveal that the saccadic system uses a probabilistic-Bayesian control strategy to compensate for uncertainty in a statistically principled way and to minimize the expected cost of saccadic errors.

2004 ◽  
Vol 91 (2) ◽  
pp. 591-603 ◽  
Author(s):  
Richard J. Krauzlis

Primates use a combination of smooth pursuit and saccadic eye movements to stabilize the retinal image of selected objects within the high-acuity region near the fovea. Pursuit has traditionally been viewed as a relatively automatic behavior, driven by visual motion signals and mediated by pathways that connect visual areas in the cerebral cortex to motor regions in the cerebellum. However, recent findings indicate that this view needs to be reconsidered. Rather than being controlled primarily by areas in extrastriate cortex specialized for processing visual motion, pursuit involves an extended network of cortical areas, and, of these, the pursuit-related region in the frontal eye fields appears to exert the most direct influence. The traditional pathways through the cerebellum are important, but there are also newly identified routes involving structures previously associated with the control of saccades, including the basal ganglia, the superior colliculus, and nuclei in the brain stem reticular formation. These recent findings suggest that the pursuit system has a functional architecture very similar to that of the saccadic system. This viewpoint provides a new perspective on the processing steps that occur as descending control signals interact with circuits in the brain stem and cerebellum responsible for gating and executing voluntary eye movements. Although the traditional view describes pursuit and saccades as two distinct neural systems, it may be more accurate to consider the two movements as different outcomes from a shared cascade of sensory–motor functions.


2007 ◽  
Vol 16 (4) ◽  
pp. 219-222 ◽  
Author(s):  
John M. Henderson

When we view the visual world, our eyes flit from one location to another about three times each second. These frequent changes in gaze direction result from very fast saccadic eye movements. Useful visual information is acquired only during fixations, periods of relative gaze stability. Gaze control is defined as the process of directing fixation through a scene in real time in the service of ongoing perceptual, cognitive, and behavioral activity. This article discusses current approaches and new empirical findings that are allowing investigators to unravel how human gaze control operates during active real-world scene perception.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e6038 ◽  
Author(s):  
Henry Railo ◽  
Henri Olkoniemi ◽  
Enni Eeronheimo ◽  
Oona Pääkkönen ◽  
Juho Joutsa ◽  
...  

Movement in Parkinson’s disease (PD) is fragmented, and the patients depend on visual information in their behavior. This suggests that the patients may have deficits in internally monitoring their own movements. Internal monitoring of movements is assumed to rely on corollary discharge signals that enable the brain to predict the sensory consequences of actions. We studied early-stage PD patients (N = 14), and age-matched healthy control participants (N = 14) to examine whether PD patients reveal deficits in updating their sensory representations after eye movements. The participants performed a double-saccade task where, in order to accurately fixate a second target, the participant must correct for the displacement caused by the first saccade. In line with previous reports, the patients had difficulties in fixating the second target when the eye movement was performed without visual guidance. Furthermore, the patients had difficulties in taking into account the error in the first saccade when making a saccade toward the second target, especially when eye movements were made toward the side with dominant motor symptoms. Across PD patients, the impairments in saccadic eye movements correlated with the integrity of the dopaminergic system as measured with [123I]FP-CIT SPECT: Patients with lower striatal (caudate, anterior putamen, and posterior putamen) dopamine transporter binding made larger errors in saccades. This effect was strongest when patients made memory-guided saccades toward the second target. Our results provide tentative evidence that the motor deficits in PD may be partly due to deficits in internal monitoring of movements.


2021 ◽  
Author(s):  
Sebastian H. Zahler ◽  
David E. Taylor ◽  
Julia M. Adams ◽  
Evan H. Feinberg

AbstractHumans read text, recognize faces, and process emotions using targeted saccadic eye movements. In the textbook model, this innate ability to make targeted saccades evolved in species with foveae or similar high-acuity retinal specializations that enable scrutiny of salient stimuli. According to the model, saccades made by species without retinal specializations (such as mice) are never targeted and serve only to reset the eyes after gaze-stabilizing movements. Here we show that mice innately make touch-evoked targeted saccades. Optogenetic manipulations revealed the neural circuit mechanisms underlying targeted saccades are conserved. Saccade probability is a U-shaped function of current eye position relative to the target, mirroring the simulated relationship between an object’s location within the visual field and the probability its next movement carries it out of view. Thus, a cardinal sophistication of our visual system may have had an unexpectedly early origin as an innate behavior that keeps stimuli in view.


2006 ◽  
Vol 95 (6) ◽  
pp. 3502-3511 ◽  
Author(s):  
C. Kip Rodgers ◽  
Douglas P. Munoz ◽  
Stephen H. Scott ◽  
Martin Paré

The intermediate layers of the superior colliculus (SC) contain neurons that clearly play a major role in regulating the production of saccadic eye movements: a burst of activity from saccade neurons (SNs) is thought to provide a drive signal to set the eyes in motion, whereas the tonic activity of fixation neurons (FNs) is thought to suppress saccades during fixation. The exact contribution of these neurons to saccade control is, however, unclear because the nature of the signals sent by the SC to the brain stem saccade generation circuit has not been studied in detail. Here we tested the hypothesis that the SC output signal is sufficient to control saccades by examining whether antidromically identified tectoreticular neurons (TRNs: 33 SNs and 13 FNs) determine the end of saccades. First, TRNs had discharge properties similar to those of nonidentified SC neurons and a proportion of output SNs had visually evoked responses, which signify that the saccade generator must receive and process visual information. Second, only a minority of TRNs possessed the temporal patterns of activity sufficient to terminate saccades: Output SNs did not cease discharging at the time of saccade end, possibly continuing to drive the brain stem during postsaccadic fixations, and output FNs did not resume their activity before saccade end. These results argue against a role for SC in regulating the timing of saccade termination by a temporal code and suggest that other saccade centers act to thwart the extraneous SC drive signal, unless it controls saccade termination by a spatial code.


2010 ◽  
Vol 2010 ◽  
pp. 1-16 ◽  
Author(s):  
Jacek Turski

Humans make about 3 saccades per second at the eyeball's speed of 700 deg/sec to reposition the high-acuity fovea on the targets of interest to build up understanding of a scene. The brain's visuosaccadic circuitry uses the oculomotor command of each impending saccade to shift receptive fields (RFs) to cortical locations before the eyes take them there, giving a continuous and stable view of the world. We have developed a model for image representation based on projective Fourier transform (PFT) intended for robotic vision, which may efficiently process visual information during the motion of a camera with silicon retina that resembles saccadic eye movements. Here, the related neuroscience background is presented, effectiveness of the conformal camera's non-Euclidean geometry in intermediate-level vision is discussed, and the algorithmic steps in modeling perisaccadic perception with PFT are proposed. Our modeling utilizes basic properties of PFT. First, PFT is computable by FFT in complex logarithmic coordinates that also approximate the retinotopy. Second, the shift of RFs in retinotopic (logarithmic) coordinates is modeled by the shift property of discrete Fourier transform. The perisaccadic mislocalization observed by human subjects in laboratory experiments is the consequence of the fact that RFs' shifts are in logarithmic coordinates.


2013 ◽  
Vol 368 (1628) ◽  
pp. 20130064 ◽  
Author(s):  
Gabriel Diaz ◽  
Joseph Cooper ◽  
Mary Hayhoe

In addition to stimulus properties and task factors, memory is an important determinant of the allocation of attention and gaze in the natural world. One way that the role of memory is revealed is by predictive eye movements. Both smooth pursuit and saccadic eye movements demonstrate predictive effects based on previous experience. We have previously shown that unskilled subjects make highly accurate predictive saccades to the anticipated location of a ball prior to a bounce in a virtual racquetball setting. In this experiment, we examined this predictive behaviour. We asked whether the period after the bounce provides subjects with visual information about the ball trajectory that is used to programme the pursuit movement initiated when the ball passes through the fixation point. We occluded a 100 ms period of the ball's trajectory immediately after the bounce, and found very little effect on the subsequent pursuit movement. Subjects did not appear to modify their strategy to prolong the fixation. Neither were we able to find an effect on interception performance. Thus, it is possible that the occluded trajectory information is not critical for subsequent pursuit, and subjects may use an estimate of the ball's trajectory to programme pursuit. These results provide further support for the role of memory in eye movements.


2018 ◽  
Author(s):  
Henry Railo ◽  
Henri Olkoniemi ◽  
Enni Eeronheimo ◽  
Oona Pääkkonen ◽  
Juho Joutsa ◽  
...  

Movement in Parkinson’s disease (PD) is fragmented, and the patients depend on visual information in their behavior. This suggests that the patients may have deficits in internally monitoring their own movements. Internal monitoring of movements is assumed to rely on corollary discharge signals that enable the brain to predict the sensory consequences of actions. We studied early-stage PD patients (N=14), and age-matched healthy control participants (N=14) to examine whether PD patients reveal deficits in updating their sensory representations after eye movements. The participants performed a double-saccade task where, in order to accurately fixate a second target, the participant must correct for the displacement caused by the first saccade. In line with previous reports, the patients had difficulties in fixating the second target when the eye movement was performed without visual guidance. Furthermore, the patients had difficulties in taking into account the error in the first saccade when making a saccade towards the second target, especially when eye movements were made towards the side with dominant motor symptoms. Across PD patients, the impairments in saccadic eye movements correlated with the integrity of the dopaminergic system as measured with [123I]FP-CIT SPECT: Patients with lower striatal (caudate, anterior putamen and posterior putamen) dopamine transporter binding made larger errors in saccades. This effect was strongest when patients made memory-guided saccades towards the second target. Our results provide tentative evidence that the motor deficits in PD may be partly accounted by deficits in internal monitoring of movements.


Sign in / Sign up

Export Citation Format

Share Document