scholarly journals Records of RNA locations in living yeast revealed through covalent marks

2020 ◽  
Vol 117 (38) ◽  
pp. 23539-23547
Author(s):  
Hugo C. Medina-Munoz ◽  
Christopher P. Lapointe ◽  
Douglas F. Porter ◽  
Marvin Wickens

RNA movements and localization pervade biology, from embryonic development to disease. To identify RNAs at specific locations, we developed a strategy in which a uridine-adding enzyme is anchored to subcellular sites, where it directly marks RNAs with 3′ terminal uridines. This localized RNA recording approach yields a record of RNA locations, and is validated through identification of RNAs localized selectively to the endoplasmic reticulum (ER) or mitochondria. We identify a broad dual localization pattern conserved from yeast to human cells, in which the same battery of mRNAs encounter both ER and mitochondria in both species, and include an mRNA encoding a key stress sensor. Subunits of many multiprotein complexes localize to both the ER and mitochondria, suggesting coordinated assembly. Noncoding RNAs in the course of RNA surveillance and processing encounter both organelles. By providing a record of RNA locations over time, the approach complements those that capture snapshots of instantaneous positions.

2019 ◽  
Author(s):  
Hugo C. Medina-Muñoz ◽  
Christopher P. Lapointe ◽  
Douglas F. Porter ◽  
Marvin Wickens

ABSTRACTRNA movements and localization pervade biology, from embryonic development to disease. To identify RNAs at specific subcellular locations, we anchored a uridine-adding enzyme at those sites, which then marked RNAs in its vicinity with 3’ terminal uridines. RNAs were tagged independent of their translation status, and included not only mRNAs, but also ncRNAs and ncRNA processing intermediates. A battery of RNAs, including the stress sensor, IRE1, were tagged at both ER and mitochondria, and reveal RNAs whose dual localization is conserved from yeast to human cells.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoyu Yang ◽  
Chenjiang You ◽  
Xufeng Wang ◽  
Lei Gao ◽  
Beixin Mo ◽  
...  

Abstract Background Small RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) serve as core players in gene silencing at transcriptional and post-transcriptional levels in plants, but their subcellular localization has not yet been well studied, thus limiting our mechanistic understanding of sRNA action. Results We investigate the cytoplasmic partitioning of sRNAs and their targets globally in maize (Zea mays, inbred line “B73”) and rice (Oryza sativa, cv. “Nipponbare”) by high-throughput sequencing of polysome-associated sRNAs and 3′ cleavage fragments, and find that both miRNAs and a subset of 21-nucleotide (nt)/22-nt siRNAs are enriched on membrane-bound polysomes (MBPs) relative to total polysomes (TPs) across different tissues. Most of the siRNAs are generated from transposable elements (TEs), and retrotransposons positively contributed to MBP overaccumulation of 22-nt TE-derived siRNAs (TE-siRNAs) as opposed to DNA transposons. Widespread occurrence of miRNA-mediated target cleavage is observed on MBPs, and a large proportion of these cleavage events are MBP-unique. Reproductive 21PHAS (21-nt phasiRNA-generating) and 24PHAS (24-nt phasiRNA-generating) precursors, which were commonly considered as noncoding RNAs, are bound by polysomes, and high-frequency cleavage of 21PHAS precursors by miR2118 and 24PHAS precursors by miR2275 is further detected on MBPs. Reproductive 21-nt phasiRNAs are enriched on MBPs as opposed to TPs, whereas 24-nt phasiRNAs are nearly completely devoid of polysome occupancy. Conclusions MBP overaccumulation is a conserved pattern for cytoplasmic partitioning of sRNAs, and endoplasmic reticulum (ER)-bound ribosomes function as an independent regulatory layer for miRNA-induced gene silencing and reproductive phasiRNA biosynthesis in maize and rice.


2005 ◽  
Vol 25 (17) ◽  
pp. 7780-7795 ◽  
Author(s):  
Nicolas Gilbert ◽  
Sheila Lutz ◽  
Tammy A. Morrish ◽  
John V. Moran

ABSTRACT LINE-1 (L1) retrotransposons comprise ∼17% of human DNA, yet little is known about L1 integration. Here, we characterized 100 retrotransposition events in HeLa cells and show that distinct DNA repair pathways can resolve L1 cDNA retrotransposition intermediates. L1 cDNA resolution can lead to various forms of genetic instability including the generation of chimeric L1s, intrachromosomal deletions, intrachromosomal duplications, and intra-L1 rearrangements as well as a possible interchromosomal translocation. The L1 retrotransposition machinery also can mobilize U6 snRNA to new genomic locations, increasing the repertoire of noncoding RNAs that are mobilized by L1s. Finally, we have determined that the L1 reverse transcriptase can faithfully replicate its own transcript and has a base misincorporation error rate of ∼1/7,000 bases. These data indicate that L1 retrotransposition in transformed human cells can lead to a variety of genomic rearrangements and suggest that host processes act to restrict L1 integration in cultured human cells. Indeed, the initial steps in L1 retrotransposition may define a host/parasite battleground that serves to limit the number of active L1s in the genome.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 912
Author(s):  
Joanna Ciomborowska-Basheer ◽  
Klaudia Staszak ◽  
Magdalena Regina Kubiak ◽  
Izabela Makałowska

Retroposition is RNA-based gene duplication leading to the creation of single exon nonfunctional copies. Nevertheless, over time, many of these duplicates acquire transcriptional capabilities. In human in most cases, these so-called retrogenes do not code for proteins but function as regulatory long noncoding RNAs (lncRNAs). The mechanisms by which they can regulate other genes include microRNA sponging, modulation of alternative splicing, epigenetic regulation and competition for stabilizing factors, among others. Here, we summarize recent findings related to lncRNAs originating from retrocopies that are involved in human diseases such as cancer and neurodegenerative, mental or cardiovascular disorders. Special attention is given to retrocopies that regulate their progenitors or host genes. Presented evidence from the literature and our bioinformatics analyses demonstrates that these retrocopies, often described as unimportant pseudogenes, are significant players in the cell’s molecular machinery.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1160 ◽  
Author(s):  
Thoufiqul Alam Riaz ◽  
Raghu Patil Junjappa ◽  
Mallikarjun Handigund ◽  
Jannatul Ferdous ◽  
Hyung-Ryong Kim ◽  
...  

Inositol-requiring transmembrane kinase endoribonuclease-1α (IRE1α) is the most prominent and evolutionarily conserved unfolded protein response (UPR) signal transducer during endoplasmic reticulum functional upset (ER stress). A IRE1α signal pathway arbitrates yin and yang of cellular fate in objectionable conditions. It plays several roles in fundamental cellular physiology as well as in several pathological conditions such as diabetes, obesity, inflammation, cancer, neurodegeneration, and in many other diseases. Thus, further understanding of its molecular structure and mechanism of action during different cell insults helps in designing and developing better therapeutic strategies for the above-mentioned chronic diseases. In this review, recent insights into structure and mechanism of activation of IRE1α along with its complex regulating network were discussed in relation to their basic cellular physiological function. Addressing different binding partners that can modulate IRE1α function, UPRosome triggers different downstream pathways depending on the cellular backdrop. Furthermore, IRE1α are in normal cell activities outside the dominion of ER stress and activities under the weather of inflammation, diabetes, and obesity-related metaflammation. Thus, IRE1 as an ER stress sensor needs to be understood from a wider perspective for comprehensive functional meaning, which facilitates us with assembling future needs and therapeutic benefits.


2019 ◽  
Vol 93 (17) ◽  
Author(s):  
Qianruo Wang ◽  
Xiu Xin ◽  
Ting Wang ◽  
Jiawu Wan ◽  
Yangtao Ou ◽  
...  

ABSTRACTAccumulated evidence demonstrates that Japanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, the precise role of PERK in JEV-induced apoptosis and encephalitis remains unknown. Here, we report that JEV infection activates the PERK-ATF4-CHOP apoptosis pathway bothin vitroandin vivo. PERK activation also promotes the formation of stress granule, which in turn represses JEV-induced apoptosis. However, PERK inhibitor reduces apoptosis, indicating that JEV-activated PERK predominantly induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway. Among JEV proteins that have been reported to induce ER stress, only JEV NS4B can induce PERK activation. PERK has been reported to form an active molecule by dimerization. The coimmunoprecipitation assay shows that NS4B interacts with PERK. Moreover, glycerol gradient centrifugation shows that NS4B induces PERK dimerization. Both the LIG-FHA and the LIG-WD40 domains within NS4B are required to induce PERK dimerization, suggesting that JEV NS4B pulls two PERK molecules together by simultaneously interacting with them via different motifs. PERK deactivation reduces brain cell damage and encephalitis during JEV infection. Furthermore, expression of JEV NS4B is sufficient to induce encephalitis via PERK in mice, indicating that JEV activates PERK primarily via its NS4B to cause encephalitis. Taken together, our findings provide a novel insight into JEV-caused encephalitis.IMPORTANCEJapanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, whether the PERK pathway of ER stress response plays important roles in JEV-induced apoptosis and encephalitis remains unknown. Here, we found that JEV infection activates ER stress sensor PERK in neuronal cells and mouse brains. PERK activation induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway upon JEV infection. Among the JEV proteins prM, E, NS1, NS2A, NS2B, and NS4B, only NS4B activates PERK. Moreover, activated PERK participates in apoptosis and encephalitis induced by JEV and NS4B. These findings provide a novel therapeutic approach for JEV-caused encephalitis.


Sign in / Sign up

Export Citation Format

Share Document