scholarly journals Load-induced dynamical transitions at graphene interfaces

2020 ◽  
Vol 117 (23) ◽  
pp. 12618-12623
Author(s):  
Deli Peng ◽  
Zhanghui Wu ◽  
Diwei Shi ◽  
Cangyu Qu ◽  
Haiyang Jiang ◽  
...  

The structural superlubricity (SSL), a state of near-zero friction between two contacted solid surfaces, has been attracting rapidly increasing research interest since it was realized in microscale graphite in 2012. An obvious question concerns the implications of SSL for micro- and nanoscale devices such as actuators. The simplest actuators are based on the application of a normal load; here we show that this leads to remarkable dynamical phenomena in microscale graphite mesas. Under an increasing normal load, we observe mechanical instabilities leading to dynamical states, the first where the loaded mesa suddenly ejects a thin flake and the second characterized by peculiar oscillations, during which a flake repeatedly pops out of the mesa and retracts back. The measured ejection speeds are extraordinarily high (maximum of 294 m/s), and correspond to ultrahigh accelerations (maximum of 1.1×1010m/s2). These observations are rationalized using a simple model, which takes into account SSL of graphite contacts and sample microstructure and considers a competition between the elastic and interfacial energies that defines the dynamical phase diagram of the system. Analyzing the observed flake ejection and oscillations, we conclude that our system exhibits a high speed in SSL, a low friction coefficient of 3.6×10−6, and a high quality factor of 1.3×107compared with what has been reported in literature. Our experimental discoveries and theoretical findings suggest a route for development of SSL-based devices such as high-frequency oscillators with ultrahigh quality factors and optomechanical switches, where retractable or oscillating mirrors are required.

2012 ◽  
Vol 542-543 ◽  
pp. 828-832 ◽  
Author(s):  
Jing Fang Yang ◽  
Xian Ying Feng ◽  
Hong Jun Fu ◽  
Lian Fang Zhao

Tire dynamic balance detection plays an important part in tire quality detection area. This paper uses the two-sided balance method to obtain the unbalance of the tire. According to the engineering practice, builds kinetic model and then introduces the calculating principle and operating procedures. In order to accurately determine the influence coefficient, a calibration method without tire is put forward. Further more, this new method is able to eliminate the unbalance caused by non-quality factors to some extent. But this method is presented based on the relative position invariance of the upper rim and lower rim, even both of them are under high-speed rotation situation. Finally, the experimental data acquired from both of the two methods are compared. The calibration method without tire is proved to be more feasible, efficient and accurate.


2021 ◽  
pp. 147387162110649
Author(s):  
Javad Yaali ◽  
Vincent Grégoire ◽  
Thomas Hurtut

High Frequency Trading (HFT), mainly based on high speed infrastructure, is a significant element of the trading industry. However, trading machines generate enormous quantities of trading messages that are difficult to explore for financial researchers and traders. Visualization tools of financial data usually focus on portfolio management and the analysis of the relationships between risk and return. Beside risk-return relationship, there are other aspects that attract financial researchers like liquidity and moments of flash crashes in the market. HFT researchers can extract these aspects from HFT data since it shows every detail of the market movement. In this paper, we present HFTViz, a visualization tool designed to help financial researchers explore the HFT dataset provided by NASDAQ exchange. HFTViz provides a comprehensive dashboard aimed at facilitate HFT data exploration. HFTViz contains two sections. It first proposes an overview of the market on a specific date. After selecting desired stocks from overview visualization to investigate in detail, HFTViz also provides a detailed view of the trading messages, the trading volumes and the liquidity measures. In a case study gathering five domain experts, we illustrate the usefulness of HFTViz.


2016 ◽  
Vol 11 (1) ◽  
pp. 23-33
Author(s):  
Maxim Golubev ◽  
Andrey Shmakov

The work presents the results of application of panoramic interferential technique which is based on elastic layers (sensors) usage to obtain pressure distribution on the flat plate having sharp leading edge. Experiments were done in supersonic wind tunnel at Mach number M = 4. Sensitivity and response time are shown to be enough to register pressure pulsation against standing and traveling sensor surface waves. Applying high-frequency image acquiring is demonstrated to make possible to distinguish at visualization images high-speed disturbances propagating in the boundary layer from low-speed surface waves


1999 ◽  
Vol 43 (8) ◽  
pp. 1633-1643 ◽  
Author(s):  
P.J. Zampardi ◽  
K. Runge ◽  
R.L. Pierson ◽  
J.A. Higgins ◽  
R. Yu ◽  
...  

2018 ◽  
Vol 70 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Hongjuan Yang ◽  
Lin Fu ◽  
Yanhua Liu ◽  
Weiji Qian ◽  
Bo Hu

Purpose This paper aims to investigate the delamination wear properties of a carbon strip in a carbon strip rubbing against a copper wire at the high-sliding speed (380 km/h) with or without electrical current. Design/methodology/approach The friction and wear properties of a carbon strip in a carbon strip rubbing against a copper wire are tested on the high-speed wear tester whose speed can reach up to 400 km/h. The test data have been collected by the high-speed data collector. The worn surfaces of the carbon strip are observed by the scanning electron microscope. Findings It was found that there was a significant increase of the delamination wear with the decrease of the normal load when the electric current is applied. The size of the flake-like peeling also increases with the decrease of normal load. The delamination wear extends gradually from the edge of the erosion pits to the surrounding area with the decrease of the normal load. However, the delamination wear never appears in the absence of electric current. It is proposed that the decreased normal load and the big electrical current are the major causes of the delamination wear of the carbon strip. Originality value The experimental test at high-sliding speed of 380 km/h was performed for the first time, and the major cause of the delamination was discovered in this paper.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4006
Author(s):  
Qinlong Wang ◽  
Hao Wang ◽  
Caixia Zhang ◽  
Qilong Zhang ◽  
Hui Yang

High-frequency communication equipment urgently needs substrate materials with lower dielectric loss, better heat dissipation, and higher stability, to ensure real-time low-loss and high-speed signal transmission. The core-shell structure of Sr2CeO4@SiO2 was prepared by the sol-gel method, and the modified powders with different volume contents were introduced into the cyclic olefin copolymer (COC) to prepare hydrocarbon resin-based composites. Due to the protective effect of the SiO2 shell, the stability of the powders is significantly improved, and the moisture barrier and corrosion resistance of the composites are enhanced, which is conducive to the normal operation of electronic equipment in harsh and complex environments. When the filler content is 20 vol%, the composite has a dielectric loss of 0.0023 at 10 GHz, a dielectric constant of 3.5, a thermal conductivity of 0.9 W·m−1·K−1, a water absorption of 0.32% and a coefficient of thermal expansion of 37.7 ppm/℃. The COC/Sr2CeO4@SiO2 composites exhibit excellent dielectric properties and thermal conductivity, while maintaining good moisture resistance and dimensional stability, which shows potential application prospects in the field of high-frequency substrates.


2021 ◽  
Author(s):  
Kohei Kobayashi ◽  
Noriyuki Kodera ◽  
Taishi Kasai ◽  
Yuhei O Tahara ◽  
Takuma Toyonaga ◽  
...  

ABSTRACTMycoplasma mobile, a parasitic bacterium, glides on solid surfaces, such as animal cells and glass by a special mechanism. This process is driven by the force generated through ATP hydrolysis on an internal structure. However, the spatial and temporal behaviors of the internal structures in living cells are unclear. In this study, we detected the movements of the internal structure by scanning cells immobilized on a glass substrate using high-speed atomic force microscopy (HS-AFM). By scanning the surface of a cell, we succeeded in visualizing particles, 2 nm in hight and aligned mostly along the cell axis with a pitch of 31.5 nm, consistent with previously reported features based on electron microscopy. Movements of individual particles were then analyzed by HS-AFM. In the presence of sodium azide, the average speed of particle movements was reduced, suggesting that movement is linked to ATP hydrolysis. Partial inhibition of the reaction by sodium azide enabled us to analyze particle behavior in detail, showing that the particles move 9 nm right, relative to the gliding direction, and 2 nm into the cell interior in 330 ms, then return to their original position, based on ATP hydrolysis.IMPORTANCEThe Mycoplasma genus contains bacteria generally parasitic to animals and plants. Some Mycoplasma species form a protrusion at a pole, bind to solid surfaces, and glide by a special mechanism linked to their infection and survival. The special machinery for gliding can be divided into surface and internal structures that have evolved from rotary motors represented by ATP synthases. This study succeeded in visualizing the real-time movements of the internal structure by scanning from the outside of the cell using an innovative high-speed atomic force microscope, and then analyzing their behaviors.


Sign in / Sign up

Export Citation Format

Share Document