scholarly journals Direct imaging of rapid tethering of synaptic vesicles accompanying exocytosis at a fast central synapse

2020 ◽  
Vol 117 (25) ◽  
pp. 14493-14502 ◽  
Author(s):  
Takafumi Miki ◽  
Mitsuharu Midorikawa ◽  
Takeshi Sakaba

A high rate of synaptic vesicle (SV) release is required at cerebellar mossy fiber terminals for rapid information processing. As the number of release sites is limited, fast SV reloading is necessary to achieve sustained release. However, rapid reloading has not been observed directly. Here, we visualize SV movements near presynaptic membrane using total internal reflection fluorescence (TIRF) microscopy. Upon stimulation, SVs appeared in the TIRF-field and became tethered to the presynaptic membrane with unexpectedly rapid time course, almost as fast as SVs disappeared due to release. However, such stimulus-induced tethering was abolished by inhibiting exocytosis, suggesting that the tethering is tightly coupled to preceding exocytosis. The newly tethered vesicles became fusion competent not immediately but only 300 ms to 400 ms after tethering. Together with model simulations, we propose that rapid tethering leads to an immediate filling of vacated spaces and release sites within <100 nm of the active zone by SVs, which serve as precursors of readily releasable vesicles, thereby shortening delays during sustained activity.

1. Electrophysiological and electron-microscopic studies were made of the effect of lan­thanum ions on frog neuromuscular junctions. 2. In the presence of 1 mM La 2+ , nerve impulses continued to invade the nerve terminals but ceased to release transmitter. 3. Lanthanum caused a rapid and large increase in the frequency of miniature end-plate potentials; presumably because La activates the mechanism of transmitter release without the usual prerequisite of presynaptic membrane depolarization. At 4 °C, La caused a 10000-fold, or even larger increase in the rate of leakage of transmitter quanta. Such high rate of trans­mitter release was not accompanied by obvious changes in electron-microscopic structure of the nerve terminals. 4. With continued La-treatment, the frequency of miniature end-plate potentials subsides slowly until they are no longer detectable at most end-plates. During this period the number of synaptic vesicles is reduced until practically all the endings become completely depleted of synaptic vesicles. In contrast, coated vesicles and membrane-bound tubes and cysternae become more numerous.


Neuroreport ◽  
1997 ◽  
Vol 8 (9) ◽  
pp. 2299-2303 ◽  
Author(s):  
Darren K. Hannesson ◽  
Lisa L. Armitage ◽  
Paul Mohapel ◽  
Michael E. Corcoran

Author(s):  
Marisa M Brockmann ◽  
Marta Maglione ◽  
Claudia G Willmes ◽  
Alexander Stumpf ◽  
Boris A Bouazza ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Jun Guo ◽  
Jian-long Ge ◽  
Mei Hao ◽  
Zhi-cheng Sun ◽  
Xin-sheng Wu ◽  
...  

Abstract Although vesicle replenishment is critical in maintaining exo-endocytosis recycling, the underlying mechanisms are not well understood. Previous studies have shown that both rapid and slow endocytosis recycle into a very large recycling pool instead of within the readily releasable pool (RRP) and the time course of RRP replenishment is slowed down by more intense stimulation. This finding contradicts the calcium/calmodulin-dependence of RRP replenishment. Here we address this issue and report a three-pool model for RRP replenishment at a central synapse. Both rapid and slow endocytosis provide vesicles to a large reserve pool (RP) ~42.3 times the RRP size. When moving from the RP to the RRP, vesicles entered an intermediate pool (IP) ~2.7 times the RRP size with slow RP-IP kinetics and fast IP-RRP kinetics, which was responsible for the well-established slow and rapid components of RRP replenishment. Depletion of the IP caused the slower RRP replenishment observed after intense stimulation. These results establish, for the first time, a realistic cycling model with all parameters measured, revealing the contribution of each cycling step in synaptic transmission. The results call for modification of the current view of the vesicle recycling steps and their roles.


Development ◽  
1983 ◽  
Vol 74 (1) ◽  
pp. 169-182
Author(s):  
Kerry B. Clegg ◽  
Lajos Pikó

Mouse embryos at the late 1-cell and late 2-cell stages were labelled with [3H]adenosine for periods of up to 320 min during which the specific activity of the ATP pool was constant. The time course of the molar accumulation of adenosine was calculated for tRNA, high-molecular-weight poly(A)− RNA and poly(A) tails versus internal regions of poly(A)+ RNA. Most of the adenosine incorporation into tRNA is due to turnover of the 3′-terminal AMP but some new synthesis of tRNA also appears to take place in both 1-cell and 2-cell embryos at a rate of about 0·2 pg/embryo/h. In the poly(A)- RNA fraction, an unstable component which is assumed to be heterogeneous nuclear RNA is synthesized at a high rate and accumulates at a steady-state level of about 1·5 pg/embryo in the 1-cell embryo and about 3·0 pg/embryo in the 2-cell embryo. Both 1-cell and 2-cell embryos synthesize relatively stable heterogeneous poly(A)− RNA, assumed to be mRNA, at a rate of about 0·3 pg/embryo/h; 2-cell embryos also synthesize mature ribosomal RNA at a rate of about 0·4 pg/embryo·h. Internally labelled poly(A)+ RNA is synthesized at a low rate in the 1-cell embryo, about 0·045 pg/embryo/h, but the rate increases to about 0·2 pg/embryo/h by the 2-cell stage. A striking feature of the 1-cell embryo is the high rate of synthesis of poly(A) tails, about 2·5 × 106 tails/embryo/h of an average length of (A)43, due almost entirely to cytoplasmic polyadenylation. This and other evidence suggests a turnover of the poly(A)+ RNA population in 1-cell embryos as a result of polyadenylation of new RNA sequences and degradation of some of the pre-existing poly(A)+ RNA. In the 2-cell embryo, the rate of synthesis of poly(A) tails (average length (A)93) is estimated at about 0·8 × 106tails/embryo/h and a significant fraction of poly(A) synthesis appears to be nuclear.


1998 ◽  
Vol 84 (3) ◽  
pp. 902-907 ◽  
Author(s):  
Michael J. Plyley ◽  
Barbara J. Olmstead ◽  
Earl G. Noble

The time course of angiogenesis during hypertrophy of the rat plantaris muscle was studied by using a unilateral, synergistic ablation model. Animals ( n = 6/group) were euthanized 2, 5, 7, 15, 21, and 30 days postmyectomy. Sections from both the hypertrophied and contralateral muscles were simultaneously stained for capillaries and muscle fiber type. Mean fiber cross-sectional area (FA) and various indexes of capillarity were determined by using a video analysis system. The capillary supply to individual fibers, assessed as the FA supplied per capillary contact, remained unchanged until day 21 (compared with day 2) and exhibited a significant increase at day 30. Analysis of the time course of capillary development on the basis of the number of capillary contacts per fiber, and of hypertrophy on the basis of FA, yielded half-lives of 10.1 and 11.2 days, respectively. It was concluded that angiogenesis during muscle overload is tightly coupled to the changes in FA, which could suggest that the two processes are initiated and/or driven by some common factor(s).


2019 ◽  
Vol 116 (47) ◽  
pp. 23783-23789 ◽  
Author(s):  
Igor Delvendahl ◽  
Katarzyna Kita ◽  
Martin Müller

Animal behavior is remarkably robust despite constant changes in neural activity. Homeostatic plasticity stabilizes central nervous system (CNS) function on time scales of hours to days. If and how CNS function is stabilized on more rapid time scales remains unknown. Here, we discovered that mossy fiber synapses in the mouse cerebellum homeostatically control synaptic efficacy within minutes after pharmacological glutamate receptor impairment. This rapid form of homeostatic plasticity is expressed presynaptically. We show that modulations of readily releasable vesicle pool size and release probability normalize synaptic strength in a hierarchical fashion upon acute pharmacological and prolonged genetic receptor perturbation. Presynaptic membrane capacitance measurements directly demonstrate regulation of vesicle pool size upon receptor impairment. Moreover, presynaptic voltage-clamp analysis revealed increased Ca2+-current density under specific experimental conditions. Thus, homeostatic modulation of presynaptic exocytosis through specific mechanisms stabilizes synaptic transmission in a CNS circuit on time scales ranging from minutes to months. Rapid presynaptic homeostatic plasticity may ensure stable neural circuit function in light of rapid activity-dependent plasticity.


2006 ◽  
Vol 96 (3) ◽  
pp. 1370-1382 ◽  
Author(s):  
James C. Beck ◽  
Paul Rothnie ◽  
Hans Straka ◽  
Susan L. Wearne ◽  
Robert Baker

Elucidating the causal role of head and eye movement signaling during cerebellar-dependent oculomotor behavior and plasticity is contingent on knowledge of precerebellar structure and function. To address this question, single-unit extracellular recordings were made from hindbrain Area II neurons that provide a major mossy fiber projection to the goldfish vestibulolateral cerebellum. During spontaneous behavior, Area II neurons exhibited minimal eye position and saccadic sensitivity. Sinusoidal visual and vestibular stimulation over a broad frequency range (0.1–4.0 Hz) demonstrated that firing rate mirrored the amplitude and phase of eye or head velocity, respectively. Table frequencies >1.0 Hz resulted in decreased firing rate relative to eye velocity gain, while phase was unchanged. During visual steps, neuronal discharge paralleled eye velocity latency (∼90 ms) and matched both the build-up and the time course of the decay (∼19 s) in eye velocity storage. Latency of neuronal discharge to table steps (40 ms) was significantly longer than for eye movement (17 ms), but firing rate rose faster than eye velocity to steady-state levels. The velocity sensitivity of Area II neurons was shown to equal (±10%) the sum of eye- and head-velocity firing rates as has been observed in cerebellar Purkinje cells. These results demonstrate that Area II neuronal firing closely emulates oculomotor performance. Conjoint signaling of head and eye velocity together with the termination pattern of each Area II neuron in the vestibulolateral lobe presents a unique eye-velocity brain stem-cerebellar pathway, eliminating the conceptual requirement of motor error signaling.


2002 ◽  
Vol 83 (5) ◽  
pp. 1211-1221 ◽  
Author(s):  
Andres Merits ◽  
Minna-Liisa Rajamäki ◽  
Päivi Lindholm ◽  
Pia Runeberg-Roos ◽  
Tuija Kekarainen ◽  
...  

Processing of the polyprotein encoded by Potato virus A (PVA; genus Potyvirus) was studied using expression of the complete PVA polyprotein or its mutants from recombinant baculoviruses in insect cells. The time-course of polyprotein processing by the main viral proteinase (NIaPro) was examined with the pulse–chase method. The sites at the P3/6K1, CI-6K2 and VPg/NIaPro junctions were processed slowly, in contrast to other proteolytic cleavage sites which were processed at a high rate. The CI-6K2 polyprotein was observed in the baculovirus system and in infected plant cells. In both cell types the majority of CI-6K2 was found in the membrane fraction, in contrast to fully processed CI. Deletion of the genomic region encoding the 6K1 protein prevented proper proteolytic separation of P3 from CI, but did not affect processing of VPg, NIaPro, NIb or CP from the polyprotein. The 6K2-encoding sequence could be removed without any detectable effect on polyprotein processing. However, deletion of either the 6K1 or 6K2 protein-encoding regions rendered PVA non-infectious. Mutations at the 6K2/VPg cleavage site reduced virus infectivity in plants, but had a less pronounced, albeit detectable, effect on proteolytic processing in the baculovirus system. The results of this study indicate that NIaPro catalyses proteolytic cleavages preferentially in cis, and that the 6K1/CI and NIb/CP sites can also be processed in trans. Both 6K peptides are indispensable for virus replication, and proteolytic separation of the 6K2 protein from the adjacent proteins by NIaPro is important for the rate of virus replication and movement.


Sign in / Sign up

Export Citation Format

Share Document