scholarly journals FOXO transcription factors activate alternative major immediate early promoters to induce human cytomegalovirus reactivation

2020 ◽  
Vol 117 (31) ◽  
pp. 18764-18770 ◽  
Author(s):  
Andrew E. Hale ◽  
Donna Collins-McMillen ◽  
Erik M. Lenarcic ◽  
Suzu Igarashi ◽  
Jeremy P. Kamil ◽  
...  

Human progenitor cells (HPCs) support human cytomegalovirus (HCMV) latency, and their differentiation along the myeloid lineage triggers cellular cues that drive reactivation. A key step during HCMV reactivation in latently infected HPCs is reexpression of viral major immediate early (MIE) genes. We recently determined that the major immediate early promoter (MIEP), which is primarily responsible for MIE gene expression during lytic replication, remains silent during reactivation. Instead, alternative promoters in the MIE locus are induced by reactivation stimuli. Here, we find that forkhead family (FOXO) transcription factors are critical for activation of alternative MIE promoters during HCMV reactivation, as mutating FOXO binding sites in alternative MIE promoters decreased HCMV IE gene expression upon reactivation and significantly decreased the production of infectious virus from latently infected primary CD34+HPCs. These findings establish a mechanistic link by which infected cells sense environmental cues to regulate latency and reactivation, and emphasize the role of contextual activation of alternative MIE promoters as the primary drivers of reactivation.

2020 ◽  
Author(s):  
Andrew E Hale ◽  
Donna Collins-McMillen ◽  
Erik M Lenarcic ◽  
Jeremy P Kamil ◽  
Felicia Goodrum ◽  
...  

AbstractA key step during viral reactivation from latency is the re-expression of viral genes. Hematopoietic progenitor cells (HPCs) support human cytomegalovirus (HCMV) latency, and their differentiation triggers cellular cues that drive reactivation. A key step during HCMV reactivation in latently infected HPCs is re-expression of viral genes. We recently determined that the major immediate early promoter (MIEP), which is primarily responsible for MIE gene expression during lytic replication, remains silent during reactivation. Instead, alternative promoters in the MIE locus are induced by reactivation stimuli. Here, we find that forkhead family (FOXO) transcription factors are critical for activation of alternative MIE promoters during HCMV reactivation, as mutating FOXO binding sites in alternative MIE promoters decreased HCMV IE gene expression upon reactivation and significantly decreased the production of infectious virus from latently infected primary CD34+ HPCs. These findings establish a mechanistic link by which infected cells sense environmental cues to regulate latency and reactivation, and emphasize the role of contextual activation of alternative MIE promoters as the primary drivers of reactivation.SignificanceHuman cytomegalovirus infection is lifelong and persistent. Periodic reactivation of cytomegalovirus poses serious disease risk for immune-compromised patients. A critical driver of reactivation is expression of viral genes from the major immediate early locus. Recent paradigm-shifting evidence shows that reactivation is driven from promoters distinct from those that drive replication in permissive cells. Understanding the contextual control of these promoters and how they specifically respond to cellular cues that drive reactivation is critical for establishing future therapies that prevent reactivation. Our findings mechanistically define a previously enigmatic relationship between differentiation and reactivation, and provide potential targets for therapeutic intervention to prevent HCMV reactivation and disease.


2007 ◽  
Vol 81 (17) ◽  
pp. 9109-9120 ◽  
Author(s):  
Ryan T. Saffert ◽  
Robert F. Kalejta

ABSTRACT In addition to productive lytic infections, herpesviruses such as human cytomegalovirus (HCMV) establish a reservoir of latently infected cells that permit lifelong colonization of the host. When latency is established, the viral immediate-early (IE) genes that initiate the lytic replication cycle are not expressed. HCMV IE gene expression at the start of a lytic infection is facilitated by the viral pp71 protein, which is delivered to cells by infectious viral particles. pp71 neutralizes the Daxx-mediated cellular intrinsic immune defense that silences IE gene expression by generating a repressive chromatin structure on the viral major IE promoter (MIEP). In naturally latently infected cells and in cells latently infected in vitro, the MIEP also adopts a similar silenced chromatin structure. Here we analyze the role of Daxx in quiescent HCMV infections in vitro that mimic some, but not all, of the characteristics of natural latency. We show that in these “latent-like” infections, the Daxx-mediated defense that represses viral gene expression is not disabled because pp71 and Daxx localize to different cellular compartments. We demonstrate that Daxx is required to establish quiescent HCMV infections in vitro because in cells that would normally foster the establishment of these latent-like infections, the loss of Daxx causes the lytic replication cycle to be initiated. Importantly, the lytic cycle is inefficiently completed, which results in an abortive infection. Our work demonstrates that, in certain cell types, HCMV must silence its own gene expression to establish quiescence and prevent abortive infection and that the virus usurps a Daxx-mediated cellular intrinsic immune defense mechanism to do so. This identifies Daxx as one of the likely multiple viral and cellular determinants in the pathway of HCMV quiescence in vitro, and perhaps in natural latent infections as well.


2019 ◽  
Vol 116 (35) ◽  
pp. 17492-17497 ◽  
Author(s):  
Donna Collins-McMillen ◽  
Mike Rak ◽  
Jason C. Buehler ◽  
Suzu Igarashi-Hayes ◽  
Jeremy P. Kamil ◽  
...  

Reactivation from latency requires reinitiation of viral gene expression and culminates in the production of infectious progeny. The major immediate early promoter (MIEP) of human cytomegalovirus (HCMV) drives the expression of crucial lytic cycle transactivators but is silenced during latency in hematopoietic progenitor cells (HPCs). Because the MIEP has poor activity in HPCs, it is unclear how viral transactivators are expressed during reactivation. It has been presumed that viral gene expression is reinitiated via de-repression of the MIEP. We demonstrate that immediate early transcripts arising from reactivation originate predominantly from alternative promoters within the canonical major immediate early locus. Disruption of these intronic promoters results in striking defects in re-expression of viral genes and viral genome replication in the THP-1 latency model. Furthermore, we show that these promoters are necessary for efficient reactivation in primary CD34+ HPCs. Our findings shift the paradigm for HCMV reactivation by demonstrating that promoter switching governs reactivation from viral latency in a context-specific manner.


2016 ◽  
Vol 90 (19) ◽  
pp. 8855-8865 ◽  
Author(s):  
Kyle C. Arend ◽  
Benjamin Ziehr ◽  
Heather A. Vincent ◽  
Nathaniel J. Moorman

ABSTRACTExpression of the human cytomegalovirus (HCMV) IE1 and IE2 proteins is critical for the establishment of lytic infection and reactivation from viral latency. Defining the mechanisms controlling IE1 and IE2 expression is therefore important for understanding how HCMV regulates its replicative cycle. Here we identify several novel transcripts encoding full-length IE1 and IE2 proteins during HCMV lytic replication. Two of the alternative major immediate early (MIE) transcripts initiate in the first intron, intron A, of the previously defined MIE transcript, while others extend the 5′ untranslated region. Each of the MIE transcripts associates with polyribosomes in infected cells and therefore contributes to IE1 and IE2 protein levels. Surprisingly, deletion of the core promoter region of the major immediate early promoter (MIEP) from a plasmid containing the MIE genomic locus did not completely abrogate IE1 and IE2 expression. Instead, deletion of the MIEP core promoter resulted in increased expression of alternative MIE transcripts, suggesting that the MIEP suppresses the activity of the alternative MIE promoters. While the canonical MIE mRNA was the most abundant transcript at immediate early times, the novel MIE transcripts accumulated to levels equivalent to that of the known MIE transcript later in infection. Using two HCMV recombinants, we found that sequences in intron A of the previously defined MIE transcript are required for efficient IE1 and IE2 expression and viral replication. Together, our results identify new regulatory sequences controlling IE1 and IE2 expression and suggest that multiple transcription units act in concert to regulate IE1 and IE2 expression during lytic infection.IMPORTANCEThe HCMV IE1 and IE2 proteins are critical regulators of HCMV replication, both during primary infection and reactivation from viral latency. This study expands our understanding of the sequences controlling IE1 and IE2 expression by defining novel transcriptional units controlling the expression of full-length IE1 and IE2 proteins. Our results suggest that alternative promoters may allow for IE1 and IE2 expression when MIEP activity is limiting, as occurs in latently infected cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Timo W. M. De Groof ◽  
Elizabeth G. Elder ◽  
Eleanor Y. Lim ◽  
Raimond Heukers ◽  
Nick D. Bergkamp ◽  
...  

AbstractLatent human cytomegalovirus (HCMV) infection is characterized by limited gene expression, making latent HCMV infections refractory to current treatments targeting viral replication. However, reactivation of latent HCMV in immunosuppressed solid organ and stem cell transplant patients often results in morbidity. Here, we report the killing of latently infected cells via a virus-specific nanobody (VUN100bv) that partially inhibits signaling of the viral receptor US28. VUN100bv reactivates immediate early gene expression in latently infected cells without inducing virus production. This allows recognition and killing of latently infected monocytes by autologous cytotoxic T lymphocytes from HCMV-seropositive individuals, which could serve as a therapy to reduce the HCMV latent reservoir of transplant patients.


2004 ◽  
Vol 78 (17) ◽  
pp. 9458-9473 ◽  
Author(s):  
Vyjayanthi Krishnan ◽  
Steven L. Zeichner

ABSTRACT The existence of reservoirs of cells latently infected with human immunodeficiency virus (HIV) is a major obstacle to the elimination of HIV infection. We studied the changes in cellular gene expression that accompany the reactivation and completion of the lytic viral cycle in cell lines chronically infected with HIV-1. We found that several genes exhibited altered expression in the chronically infected cells compared to the uninfected parental cells prior to induction into lytic replication. A number of gene classes showed increased expression in the chronically infected cells, notably including genes encoding proteasomes, histone deacetylases, and many transcription factors. Following induction of the lytic replication cycle, we observed ordered, time-dependent changes in the cellular gene expression pattern. Approximately 1,740 genes, many of which fall into 385 known pathways, were differentially expressed (P < 0.001), indicating that completion of the HIV replication cycle is associated with distinct, temporally ordered changes in host cell gene expression. Maximum changes were observed in the early and intermediate phases of the lytic replication cycle. Since the changes in gene expression in chronically infected cells suggested that cells latently infected with HIV have a different gene expression profile than corresponding uninfected cells, we studied the expression profiles of three different chronically infected cell lines to determine whether they showed similar changes in common cellular genes and pathways. Thirty-two genes showed significant differential expression in all cell lines studied compared to their uninfected parental cell lines. Notable among them were cdc42 and lyn, which were downregulated and are required for HIV Nef binding and viral replication. Other genes previously unrelated to HIV latency or pathogenesis were also differentially expressed. To determine the effects of targeting products of the genes that were differentially expressed in latently infected cells, we treated the latently infected cells with a proteasome inhibitor, clastolactacystin-beta-lactone (CLBL), and an Egr1 activator, resveratrol. We found that treatment with CLBL and resveratrol stimulated lytic viral replication, suggesting that treatment of cells with agents that target cellular genes differentially expressed in latently infected cells can stimulate lytic replication. These findings may offer new insights into the interaction of the latently infected host cell and HIV and suggest therapeutic approaches for inhibiting HIV infection and for manipulating cells latently infected with HIV so as to trigger lytic replication.


2000 ◽  
Vol 74 (9) ◽  
pp. 4192-4206 ◽  
Author(s):  
Anita K. McElroy ◽  
Roopashree S. Dwarakanath ◽  
Deborah H. Spector

ABSTRACT We have previously shown that many cell cycle regulatory gene products are markedly affected by infection of primary fibroblasts with human cytomegalovirus (HCMV) (F. M. Jault, J. M. Jault, F. Ruchti, E. A. Fortunato, C. Clark, J. Corbeil, D. D. Richman, and D. H. Spector, J. Virol. 69:6697–6704, 1995). One of these proteins, cyclin E, is a key determinant of cell cycle progression during G1, and its mRNA levels are significantly increased in HCMV-infected fibroblasts (B. S. Salvant, E. A. Fortunato, and D. H. Spector, J. Virol. 72:3729–3741, 1998). To determine the molecular basis of this effect, we have examined the events that occur at the endogenous cyclin E promoter during the course of infection. In vivo dimethyl sulfate footprinting of the cyclin E promoter revealed several regions of protection and hypersensitivity that were unique to infected cells. In accord with this observation, we find that the virus-induced cyclin E transcripts initiate downstream of the start site identified in mock-infected cells, in regions where these newly appearing protected and hypersensitive sites occur. Viral gene expression is required for this induction. However, the viral immediate-early proteins IE1-72 and IE2-86, either alone or in combination, cannot induce expression of the endogenous cyclin E. The virus must progress past the immediate-early phase and express an early gene product(s) for activation of cyclin E expression. Moreover, IE1-72 does not appear to be required, as infection of cells with an HCMV mutant containing a deletion in the IE1-72 gene leads to full upregulation of cyclin E expression. Using electrophoretic mobility shift assays with infected cell extracts and a region of the cyclin E promoter that includes two previously defined E2F sites as the probe, we detected the appearance of an infection-specific banding pattern. One of the infection-specific bands contained the proteins E2F-4, DP-1, and p130, which were maintained in the infected cells as uniquely phosphorylated species. These results suggest that an altered E2F-4–DP-1–p130 complex along with viral early gene expression may play a role in the transcriptional regulation of cyclin E mRNA during HCMV infection.


2018 ◽  
Vol 26 ◽  
pp. 204020661876319 ◽  
Author(s):  
Koh-Hei Yamada ◽  
Ryuichi Majima ◽  
Toyofumi Yamaguchi ◽  
Naoki Inoue

Background Previously, we established a reporter cell line for human cytomegalovirus and screened anti-human cytomegalovirus compounds using the cell line. In this study, we characterized one of the identified compounds, 2,4-diamino-6–(4-methoxyphenyl)pyrimidine (coded as 35C10). Methods 50% Effective concentrations (EC50s) and 50% cytotoxic concentrations (CC50s) of 35C10 and its derivatives in human fibroblasts were determined by X-gal staining of the cells infected with human cytomegalovirus Towne strain expressing β-galactosidase. Results EC50 and CC50 of 35C10 were 4.3 µM and >200 µM, respectively. Among several 35C10 derivatives, only one lacking 4-amino group of pyrimidine showed a similar EC50. 35C10 weakly inhibited murine cytomegalovirus, herpes simplex virus type 1, and varicella-zoster virus. A “time of addition” experiment suggested that 35C10 inhibited an early phase of the infection. Although 35C10 did not inhibit viral attachment to the cells nor the delivery of viral DNA to the nuclei, it decreased the number of infected cells expressing immediate-early 1 and 2 (IE1/IE2) proteins. 35C10 also inhibited the activation of a promoter for TRL4 in the reporter cells upon human cytomegalovirus infection, but not in the same reporter cells transfected with a plasmid expressing IE2. Conclusion Our findings suggest that 35C10 is a novel compound that inhibits IE gene expression in human cytomegalovirus-infected cells.


Sign in / Sign up

Export Citation Format

Share Document