scholarly journals Overcoming Rayleigh–Plateau instabilities: Stabilizing and destabilizing liquid-metal streams via electrochemical oxidation

2020 ◽  
Vol 117 (32) ◽  
pp. 19026-19032 ◽  
Author(s):  
Minyung Song ◽  
Karin Kartawira ◽  
Keith D. Hillaire ◽  
Cheng Li ◽  
Collin B. Eaker ◽  
...  

Liquids typically form droplets when exiting a nozzle. Jets––cylindrical streams of fluid—can form transiently at higher fluid velocities, yet interfacial tension rapidly drives jet breakup into droplets via the Rayleigh–Plateau instability. Liquid metal is an unlikely candidate to form stable jets since it has enormous interfacial tension and low viscosity. We report that electrochemical anodization significantly lowers the effective tension of a stream of metal, transitioning it from droplets to long (long lifetime and length) wires with 100-μm diameters without the need for high velocities. Whereas surface minimization drives Rayleigh–Plateau instabilities, these streams of metal increase in surface area when laid flat upon a surface due to the low tension. The ability to tune interfacial tension over at least three orders of magnitude using modest potential (<1 V) enables new approaches for production of metallic structures at room temperature, on-demand fluid-in-fluid structuring, and new tools for studying and controlling fluid behavior.

2016 ◽  
Vol 3 (3) ◽  
pp. 031103 ◽  
Author(s):  
Collin B. Eaker ◽  
Michael D. Dickey

2012 ◽  
Vol 268-270 ◽  
pp. 547-550
Author(s):  
Qing Wang Liu ◽  
Xin Wang ◽  
Zhen Zhong Fan ◽  
Jiao Wang ◽  
Rui Gao ◽  
...  

Liaohe oil field block 58 for Huancai, the efficiency of production of thickened oil is low, and the efficiency of displacement is worse, likely to cause other issues. Researching and developing an type of Heavy Oil Viscosity Reducer for exploiting. The high viscosity of W/O emulsion changed into low viscosity O/W emulsion to facilitate recovery, enhanced oil recovery. Through the experiment determine the viscosity properties of Heavy Oil Viscosity Reducer. The oil/water interfacial tension is lower than 0.0031mN•m-1, salt-resisting is good. The efficiency of viscosity reduction is higher than 90%, and also good at 180°C.


1977 ◽  
Vol 17 (02) ◽  
pp. 122-128 ◽  
Author(s):  
W.H. Wade ◽  
J.C. Morgan ◽  
J.K. Jacobson ◽  
R.S. Schechter

Abstract The interfacial tension of surfactant mixtures with hydrocarbons obeys a simple scaling rule. Many apparently inert surfactants give low tensions when in mixtures; the scaling rule still applies to these mixtures. The influence of surfactant structure and molecular weight on low-tension behavior is examined, and the application of these results to the optimization of surfactant flooding systems is discussed. Introduction It has been shown that the interfacial-tension behavior of a given crude oil with a surfactant solution of the sulfonate type may be modeled by replacing the crude oil with one particular alkane. The number of carbon atoms in the alkane is referred to as the equivalent alkane carbon number (EACN) of the crude oil, and this EACN is independent of the surfactant used (at fixed standard conditions). This equivalency of a crude oil and an alkane is a result of the simple averaging behavior of hydrocarbons when mixed. Any hydrocarbon may be assigned an EACN value. For instance, when homologous series of alkyl benzenes and alkanes are run against the petroleum sulfonate TRS 10-80 at 2 gm/liter of surfactant with 10 gm/liter NaCl present, heptyl benzene and heptane, respectively, give minimum interfacial tensions, a. The EACN of heptyl benzene is 7, since it is equivalent to heptane. A simple averaging rule will give the EACN of a hydrocarbon mixture : (1) where x is the mole fraction of the ith component. Thus, an equimolar mixture of undecane (EACN 11) and heptyl benzene (EACN 7) has an EACN of 9. If a surfactant gives a low (minimum) sigma against nonane (EACN 9), it will also give a low sigma against the above mixture. Eq. 1 implies that a crude oil, which is a multicomponent hydrocarbon mixture, may be assigned an EACN. This has been verified experimentally. For example, Big Muddy field crude oil has an EACN of 8.5. Therefore, any surfactant phase giving a minimum tension against an equimolar mixture of octane and nonane gives a low tension against Big Muddy crude. All crude oils rested to date have EACN's ranging from 6 to 9. For a given surfactant, the alkane of minimum tension (min) may be affected by the electrolyte concentration or type, the temperature, the surfactant concentration, or the presence of a cosurfactant. These system variables may be adjusted until the nmin for a surfactant matches exactly the EACN of a crude oil. For any particular surfactant, many different combinations of variables will give the same n min value; therefore, there are many possible systems, each with n = EACN, available for crude oil recovery. In practice, however, the system variables may be manipulated to a limited extent only. The temperature of an oil field is fixed, and the surfactant concentration is limited by considerations of solubility and expense. The electrolyte concentration and type is partly determined by oilfield conditions and is limited by the effect on surfactant solubility. These limitations mean that many of the surfactants presently available on a large enough scale for use in low-tension flooding will not give minimum tensions in the range required (n of 6 to 9). This paper shows how minimal sigma's in the required range may be found for some of these "off-scale" surfactants when they are used in surfactant mixtures. The hypothesis tested here is that surfactant mixtures average in a manner analogous to the averaging of hydrocarbons in the oil phase. It will be shown that each surfactant component may be assigned an n value and that the alkane of minimum tension of a mixture of surfactants, (n), is then given by (2) where x is now the mole fraction of the ith component of the surfactant mixture. This greatly extends the number of surfactants that may be considered as candidates for use in low interfacial-tension flooding. SPEJ P. 122


1986 ◽  
Vol 17 (2) ◽  
pp. 339-346 ◽  
Author(s):  
T. Utigard ◽  
J. M. Toguri ◽  
T. Nakamura

2017 ◽  
Vol 826 ◽  
pp. 128-157 ◽  
Author(s):  
Alireza Mohammadi ◽  
Alexander J. Smits

The stability of two-layer Couette flow is investigated under variations in viscosity ratio, thickness ratio, interfacial tension and density ratio. The effects of the base flow on eigenvalue spectra are explained. A new type of interfacial mode is discovered at low viscosity ratio with properties that are different from Yih’s original interfacial mode (Yih, J. Fluid Mech., vol. 27, 1967, pp. 337–352). No unstable Tollmien–Schlichting waves were found over the range of parameters considered in this work. The results for thin films with different thicknesses can be collapsed onto a single curve if the Reynolds number and wavenumber are suitably defined based on the parameters of the thin layer. Interfacial tension always has a stabilizing effect, but the effects of density ratio cannot be so easily generalized. Neutral stability curves for water–alkane and water–air systems are presented as an initial step towards better understanding the effects of flow stability on the longevity and performance of liquid-infused surfaces and superhydrophobic surfaces.


2021 ◽  
pp. 2100024
Author(s):  
Minyung Song ◽  
Karen E. Daniels ◽  
Abolfazl Kiani ◽  
Sahar Rashid‐Nadimi ◽  
Michael D. Dickey

2000 ◽  
Vol 10 (4) ◽  
pp. 166-177 ◽  
Author(s):  
Graham M. Harrison ◽  
D. V. Boger

Abstract A series of low and constant viscosity elastic liquids are constructed and are studied rheologically. Steady shear viscosity and normal stresses, dynamic properties, and an apparent extensional viscosity are measured using well-established techniques. The rheological characteristics of the solution are used to help explain the physical basis for non-Newtonian phenomena in short time scale processes such as jet breakup, splash, spray atom-isation and swirling flow. It is demonstrated that even when the shear viscosity is maintained at a constant value, significant differences occur in processes due to the differences in the elasticity of the fluids. Some implications for these observations are discussed. The paper is an overview on our work on elastic effects in the flow of low viscosity fluids. It reflects the verbal presentation made at the Professor John D. Ferry Symposium at the 71st Annual Meeting of the Society of Rheology.


1982 ◽  
Vol 22 (03) ◽  
pp. 371-381 ◽  
Author(s):  
Jude O. Amaefule ◽  
Lyman L. Handy

Abstract Relative permeabilities of systems containing low- tension additives are needed to develop mechanistic insights as to how injected aqueous chemicals affect fluid distribution and flow behavior. This paper presents results of an experimental investigation of the effect of low interfacial tensions (IFT's) on relative oil/water permeabilities of consolidated porous media. The steady- and unsteady-state displacement methods were used to generate relative permeability curves. Aqueous low-concentration surfactant systems were used to vary IFT levels. Empirical correlations were developed that relate the imbibition relative permeabilities, apparent viscosity, residual oil, and water saturations to the interfacial tension through the capillary number (Nc=v mu / sigma). They require two empirical, experimentally generated coefficients. The experimental results show that the relative oil/water permeabilities at any given saturation are affected substantially by IFT values lower than 10-1 mN/m. Relative oil/water permeabilities increased with decreasing IFT (increasing N ). The residual oil and residual water saturations (S, and S) decreased, while the total relative mobilities increased with decreasing IFT. The correlations predict values of relative oil/water permeability ratios, fractional flow, and residual saturations that agree with our experimental data. Apparent mobility design viscosities decreased exponentially with the capillary number. The results of this study can be used with simulators to predict process performance and efficiency for enhanced oil-recovery projects in which chemicals are considered for use either as waterflood or steamflood additives. However, the combined effect of decreased interfacial tension and increased temperature on relative permeabilities has not yet been studied. Introduction Oil displacement with an aqueous low-concentration surfactant solution is primarily dependent on the effectiveness of the solutions in reducing the IFT between the aqueous phase and the reservoir oil. With the attainment of ultralow IFT's (10 mN/m) and with adequate mobility controls, all the oil contacted can conceivably be displaced. When the interfacial tension is reduced to near zero values, the process tends to approach miscible displacement. However, most high-concentration soluble oil systems revert to immiscible displacement processes as the injected chemical traverses the reservoir. This is a result of the continual depletion of the surfactant by adsorption on the rock and by precipitation with divalent cations in the reservoir brine. The mechanism by which residual oil is mobilized by low-tension displacing fluids cannot be explained solely by the application of Darcy's law to both the aqueous and the oleic phases. On the other hand, in those reservoir regions in which water and oil are flowing concurrently as continuous phases, Darcy's law would be expected to apply and the relative permeability concept would be valid. If a low-tension aqueous phase were to invade a region in which the oil had not as yet been reduced to a discontinuous irreducible saturation, one would expect, also, that the relative permeability concept would be applicable. Under circumstances for which these conditions apply, relative permeabilities at low interfacial tensions would be required, The effect of IFT's on relative permeability curves has received limited treatment in the petroleum literature. Leverett reported a small but definite tendency for a water/oil system in unconsolidated rocks to exhibit 20 to 30% higher relative permeabilities if the IFT was decreased from 24 to 5 mN/m. Mungan studied interfacial effects on oil displacement in Teflons cores. The interfacial tension values varied from 5 to 40 mN/m. SPEJ P. 371^


ChemPhysChem ◽  
2018 ◽  
Vol 19 (13) ◽  
pp. 1551-1551
Author(s):  
Stephan Handschuh-Wang ◽  
Yuzhen Chen ◽  
Lifei Zhu ◽  
Xuechang Zhou

Sign in / Sign up

Export Citation Format

Share Document