scholarly journals POLQ suppresses interhomolog recombination and loss of heterozygosity at targeted DNA breaks

2020 ◽  
Vol 117 (37) ◽  
pp. 22900-22909 ◽  
Author(s):  
Luther Davis ◽  
Kevin J. Khoo ◽  
Yinbo Zhang ◽  
Nancy Maizels

Interhomolog recombination (IHR) occurs spontaneously in somatic human cells at frequencies that are low but sufficient to ameliorate some genetic diseases caused by heterozygous mutations or autosomal dominant mutations. Here we demonstrate that DNA nicks or double-strand breaks (DSBs) targeted by CRISPR-Cas9 to both homologs can stimulate IHR and associated copy-neutral loss of heterozygosity (cnLOH) in human cells. The frequency of IHR is 10-fold lower at nicks than at DSBs, but cnLOH is evident in a greater fraction of recombinants. IHR at DSBs occurs predominantly via reciprocal end joining. At DSBs, depletion of POLQ caused a dramatic increase in IHR and in the fraction of recombinants exhibiting cnLOH, suggesting that POLQ promotes end joining in cis, which limits breaks available for recombination in trans. These results define conditions that may produce cnLOH as a mutagenic signature in cancer and may, conversely, promote therapeutic correction of both compound heterozygous and dominant negative mutations associated with genetic disease.

2009 ◽  
Vol 106 (37) ◽  
pp. 15762-15767 ◽  
Author(s):  
Samantha G. Zeitlin ◽  
Norman M. Baker ◽  
Brian R. Chapados ◽  
Evi Soutoglou ◽  
Jean Y. J. Wang ◽  
...  

The histone H3 variant CENP-A is required for epigenetic specification of centromere identity through a loading mechanism independent of DNA sequence. Using multiphoton absorption and DNA cleavage at unique sites by I-SceI endonuclease, we demonstrate that CENP-A is rapidly recruited to double-strand breaks in DNA, along with three components (CENP-N, CENP-T, and CENP-U) associated with CENP-A at centromeres. The centromere-targeting domain of CENP-A is both necessary and sufficient for recruitment to double-strand breaks. CENP-A accumulation at DNA breaks is enhanced by active non-homologous end-joining but does not require DNA-PKcs or Ligase IV, and is independent of H2AX. Thus, induction of a double-strand break is sufficient to recruit CENP-A in human and mouse cells. Finally, since cell survival after radiation-induced DNA damage correlates with CENP-A expression level, we propose that CENP-A may have a function in DNA repair.


Blood ◽  
2009 ◽  
Vol 113 (25) ◽  
pp. 6403-6410 ◽  
Author(s):  
Anna M. Jankowska ◽  
Hadrian Szpurka ◽  
Ramon V. Tiu ◽  
Hideki Makishima ◽  
Manuel Afable ◽  
...  

Abstract Chromosomal abnormalities are frequent in myeloid malignancies, but in most cases of myelodysplasia (MDS) and myeloproliferative neoplasms (MPN), underlying pathogenic molecular lesions are unknown. We identified recurrent areas of somatic copy number–neutral loss of heterozygosity (LOH) and deletions of chromosome 4q24 in a large cohort of patients with myeloid malignancies including MDS and related mixed MDS/MPN syndromes using single nucleotide polymorphism arrays. We then investigated genes in the commonly affected area for mutations. When we sequenced TET2, we found homozygous and hemizygous mutations. Heterozygous and compound heterozygous mutations were found in patients with similar clinical phenotypes without LOH4q24. Clinical analysis showed most TET2 mutations were present in patients with MDS/MPN (58%), including CMML (6/17) or sAML (32%) evolved from MDS/MPN and typical MDS (10%), suggesting they may play a ubiquitous role in malignant evolution. TET2 mutations affected conserved domains and the N terminus. TET2 is widely expressed in hematopoietic cells but its function is unknown, and it lacks homology to other known genes. The frequency of mutations in this candidate myeloid regulatory gene suggests an important role in the pathogenesis of poor prognosis MDS/MPN and sAML and may act as a disease gene marker for these often cytogenetically normal disorders.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 416-416
Author(s):  
Anna M. Jankowska ◽  
Hideki Makishima ◽  
Rebecca D Ganetzky ◽  
Monika Jasek ◽  
Heather Cazzolli ◽  
...  

Abstract Abstract 416 Chronic myelomonocytic leukemia (CMML) is characterized by monocyte/monoblast proliferation, dysplastic features, progression to leukemia and poor prognosis. With the exception of rare cases of CMML with balanced PDGFRa or PDGFRb translocations, the molecular pathogenesis of the majority of CMML cases remains elusive. To date, somatic mutations pathogenic for CMML have not been identified, and large tyrosine kinase sequencing projects have been negative. The recent application of SNP-A as a karyotyping tool has allowed for more precise analyses of chromosomal defects and detection of copy-neutral loss of heterozygosity (CN-LOH). Previously, various recurrent areas of CN-LOH have been found in myeloid malignancies, but these lesions were particularly frequent in CMML. We have examined 68 patients with CMML and AML with antecedent CMML for recurrent areas of LOH, mapped mutations in genes contained within corresponding minimally affected regions, and examined their impact on clinical outcomes. We focused on Cbl, TET2 and RAS mutations and the resultant clinical and pathomorphologic phenotypes and outcomes associated with individual mutations. SNP-A-based karyotyping showed the presence of chromosomal aberrations in a larger proportion of cases than did metaphase cytogenetics: recurrent areas of somatic UPD were found in 49% of patients, with the most common shared lesions including UPD4q (n=6), UPD7q (n=6) and UPD11q (n=4). Initial identification of recurrent UPD11q and UPD4q and micro-deletions defining the smallest commonly affected areas led to the discovery of new mutations in CMML, including c-Cbl and TET2. In sum, we identified c-Cbl in 13%, TET2 in 49%, and RAS mutations in 10% of patients with CMML and sAML derived from CMML. LOH involving chromosome 7 was present in 18% of patients. All c-Cbl mutations were somatic and in the RING finger domain or linker sequence; 3/6 mutations were homozygous and one case with del11q harbored a hemizygous mutation. TET2 alterations were identified in 23 patients; in 26% of patients, both alleles were affected. However, no clinical differences were found between heterozygous and homozygous cases of TET2 mutations, suggesting a dominant negative effect. We also identified patients who harbored both TET2 and c-Cbl or RAS mutations demonstrating a multi-step pathogenesis of CMML. In addition, aberrant methylation at the CpG islands of promoters of TET2 (2 sites), c-Cbl (2 sites), b-Cbl (2 sites) and RAS (7 sites) was found to be relatively infrequent among patients. Intricate analysis of clinical and phenotypic features did not reveal pathognomonic phenotypes; however TET2 and c-Cbl mutations were associated with higher WBC (p=.027) or thrombocytopenia (p=.026), respectively and RAS mutations were associated with advanced disease (p=.027). Patients with LOH7q were included in our analysis as a separate group because they likely carried mutations in a putative candidate gene on 7q. In general, megakaryocyte nuclei displayed aberrant STAT5 staining in 31% of CMML cases (n=32) and correlated with morphologic dysplasia. Aberrant pSTAT5 staining suggestive of downstream pathways involving proliferative signals was present in 43% of TET2 mutated patients and 67% of c-Cbl mutants. None of the RAS mutants displayed aberrant STAT5 staining. Thus, aberrant STAT5 activation is not an obligatory feature of TET2 and RAS mutant cases, as opposed to the majority of c-Cbl mutant cases. There was no significant difference in survival between patients with TET2, c-Cbl and RAS mutations or those with LOH7q as compared to those without. Nevertheless, TET2 and c-Cbl mutant cases trended towards less favorable survival within lower-risk (<5% blasts) CMML, while no differences were seen in advanced cases, likely due to the uniformly poor survival in this group. Regardless of the presence of putative mutations, patients with LOH7q, including UPD7, shared a poor prognosis (7 vs. 11mo). In sum, our results characterize CMML as a disorder frequently associated with acquired chromosomal lesions, activated STAT5 signaling, genetic mutations in RAS, ubiquitin modification and TET2 pathways. Mutations present in these patients may help to clarify pathogenic pathways, and thereby develop directed therapies. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Christopher B. Nelson ◽  
Taghreed M. Alturki ◽  
Jared J. Luxton ◽  
Lynn E. Taylor ◽  
David G. Maranon ◽  
...  

Telomeres, repetitive nucleoprotein complexes that protect chromosomal termini and prevent them from activating inappropriate DNA damage responses (DDRs), shorten with cell division and thus with aging. Here, we characterized the human cellular response to targeted telomeric double-strand breaks (DSBs) in telomerase-positive and telomerase-independent alternative lengthening of telomere (ALT) cells, specifically in G1 phase. Telomeric DSBs in human G1 cells elicited early signatures of a DDR; however, localization of 53BP1, an important regulator of resection at broken ends, was not observed at telomeric break sites. Consistent with this finding and previously reported repression of classical non-homologous end-joining (c-NHEJ) at telomeres, evidence for c-NHEJ was also lacking. Likewise, no evidence of homologous recombination (HR)-dependent repair of telomeric DSBs in G1 was observed. Rather, and supportive of rapid truncation events, telomeric DSBs in G1 human cells facilitated formation of extensive tracks of resected 5′ C-rich telomeric single-stranded (ss)DNA, a previously proposed marker of the recombination-dependent ALT pathway. Indeed, induction of telomeric DSBs in human ALT cells resulted in significant increases in 5′ C-rich (ss)telomeric DNA in G1, which rather than RPA, was bound by the complementary telomeric RNA, TERRA, presumably to protect these exposed ends so that they persist into S/G2 for telomerase-mediated or HR-dependent elongation, while also circumventing conventional repair pathways. Results demonstrate the remarkable adaptability of telomeres, and thus they have important implications for persistent telomeric DNA damage in normal human G1/G0 cells (e.g., lymphocytes), as well as for therapeutically relevant targets to improve treatment of ALT-positive tumors.


1985 ◽  
Vol 73 (1) ◽  
pp. 159-186
Author(s):  
A.M. Mullinger ◽  
R.T. Johnson

DNA repair occurs in metaphase-arrested cells in response to ultraviolet irradiation. In the presence of the repair synthesis inhibitors hydroxyurea and 1-beta-D-arabinofuranosylcytosine the chromosomes of such cells, as seen in Carnoy-fixed preparations, are decondensed. The extent of decondensation is related to both the u.v. dose and the duration of incubation in the presence of inhibitors. For any particular cell type there is a reasonable correlation between the amount of decondensation and the number of single-strand DNA breaks generated by the repair process under the same inhibitory conditions, though the chromosome changes continue after the number of single-strand breaks has reached a plateau. The dose response of chromosome decondensation varies between different cell types but is in general correlated with differences in levels of single-strand breaks accumulated under comparable inhibitory conditions. Decondensation can be detected after 0.5 Jm-2 in repair-competent human cells. In human cells defective in excision repair there is much less chromosome decondensation in response to the same u.v. dose and time of repair inhibition. However, a simian virus 40-transformed muntjac cell displays pronounced chromosome decondensation but has limited incision ability. Both chromosome decondensation and single-strand break accumulation in the presence of inhibitors are reversed when DNA precursors are provided, but reversal after higher u.v. doses and longer periods of incubation leads to recondensed chromosomes that are fragmented. Elution of the DNA from such cells through polycarbonate filters under non-denaturing conditions reveals that double-strand DNA breaks are generated during the period of incubation with inhibitors. Although the chromosomes of repair-inhibited metaphase cells are decondensed in fixed preparations, their morphology appears normal in intact cells. The cells also retain a capacity to induce prematurely condensed chromosomes (PCC) when fused with interphase cells: compared with control mitotic cells, the speed of induction is sometimes reduced but the final amount of PCC produced is similar.


2006 ◽  
Vol 26 (5) ◽  
pp. 1839-1849 ◽  
Author(s):  
Arman Nabatiyan ◽  
Dávid Szüts ◽  
Torsten Krude

ABSTRACT Genome stability in eukaryotic cells is maintained through efficient DNA damage repair pathways, which have to access and utilize chromatin as their natural template. Here we investigate the role of chromatin assembly factor 1 (CAF-1) and its interacting protein, PCNA, in the response of quiescent human cells to DNA double-strand breaks (DSBs). The expression of CAF-1 and PCNA is dramatically induced in quiescent cells upon the generation of DSBs by the radiomimetic drug bleocin (a bleomycin compound) or by ionizing radiation. This induction depends on DNA-PK. CAF-1 and PCNA are recruited to damaged chromatin undergoing DNA repair of single- and double-strand DNA breaks by the base excision repair and nonhomologous end-joining pathways, respectively, in the absence of extensive DNA synthesis. CAF-1 prepared from repair-proficient quiescent cells after induction by bleocin mediates nucleosome assembly in vitro. Depletion of CAF-1 by RNA interference in bleocin-treated quiescent cells in vivo results in a significant loss of cell viability and an accumulation of DSBs. These results support a novel and essential role for CAF-1 in the response of quiescent human cells to DSBs, possibly by reassembling chromatin following repair of DNA strand breaks.


2021 ◽  
Author(s):  
Ekaterina Akimova ◽  
Franz Josef Gassner ◽  
Maria Schubert ◽  
Stefan Rebhandl ◽  
Claudia Arzt ◽  
...  

Abstract Aberrant end joining of DNA double strand breaks leads to chromosomal rearrangements and to insertion of nuclear or mitochondrial DNA into breakpoints, which is commonly observed in cancer cells and constitutes a major threat to genome integrity. However, the mechanisms that are causative for these insertions are largely unknown. By monitoring end joining of different linear DNA substrates introduced into HEK293 cells, as well as by examining end joining of CRISPR/Cas9 induced DNA breaks in HEK293 and HeLa cells, we provide evidence that the dNTPase activity of SAMHD1 impedes aberrant DNA resynthesis at DNA breaks during DNA end joining. Hence, SAMHD1 expression or low intracellular dNTP levels lead to shorter repair joints and impede insertion of distant DNA regions prior end repair. Our results reveal a novel role for SAMHD1 in DNA end joining and provide new insights into how loss of SAMHD1 may contribute to genome instability and cancer development.


2019 ◽  
Author(s):  
Jason Sims ◽  
Gregory P. Copenhaver ◽  
Peter Schlögelhofer

AbstractRibosomal RNA genes are arranged in large arrays with hundreds of rDNA units in tandem. These highly repetitive DNA elements pose a risk to genome stability since they can undergo non-allelic exchanges. During meiosis DNA double strand breaks (DSBs) are induced as part of the regular program to generate gametes. Meiotic DSBs initiate homologous recombination (HR) which subsequently ensures genetic exchange and chromosome disjunction.In Arabidopsis thaliana we demonstrate that all 45S rDNA arrays become transcriptionally active and are recruited into the nucleolus early in meiosis. This shields the rDNA from acquiring canonical meiotic chromatin modifications, meiotic cohesin and meiosis-specific DSBs. DNA breaks within the rDNA arrays are repaired in a RAD51-independent, but LIG4-dependent manner, establishing that it is non-homologous end joining (NHEJ) that maintains rDNA integrity during meiosis. Utilizing ectopically integrated rDNA repeats we validate our findings and demonstrate that the rDNA constitutes a HR-refractory genome environment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joost Schimmel ◽  
Núria Muñoz-Subirana ◽  
Hanneke Kool ◽  
Robin van Schendel ◽  
Marcel Tijsterman

AbstractSmall tandem duplications of DNA occur frequently in the human genome and are implicated in the aetiology of certain human cancers. Recent studies have suggested that DNA double-strand breaks are causal to this mutational class, but the underlying mechanism remains elusive. Here, we identify a crucial role for DNA polymerase α (Pol α)-primase in tandem duplication formation at breaks having complementary 3′ ssDNA protrusions. By including so-called primase deserts in CRISPR/Cas9-induced DNA break configurations, we reveal that fill-in synthesis preferentially starts at the 3′ tip, and find this activity to be dependent on 53BP1, and the CTC1-STN1-TEN1 (CST) and Shieldin complexes. This axis generates near-blunt ends specifically at DNA breaks with 3′ overhangs, which are subsequently repaired by non-homologous end-joining. Our study provides a mechanistic explanation for a mutational signature abundantly observed in the genomes of species and cancer cells.


2018 ◽  
Vol 29 (2) ◽  
pp. 75-83 ◽  
Author(s):  
Stefan Reber ◽  
Jonas Mechtersheimer ◽  
Sofia Nasif ◽  
Julio Aguila Benitez ◽  
Martino Colombo ◽  
...  

Conventional nonhomologous end joining–based gene knockouts can lead to the production of C-terminally truncated proteins with potentially residual or dominant negative functions. Combining CRISPR/Cas9 with gene traps targeting the first intron (CRISPR-Trap), however, completely prevents the expression of the open reading frame, resulting in clean gene knockouts.


Sign in / Sign up

Export Citation Format

Share Document