Forestalling age-impaired angiogenesis and blood flow by targeting NOX: Interplay of NOX1, IL-6, and SASP in propagating cell senescence

2021 ◽  
Vol 118 (42) ◽  
pp. e2015666118
Author(s):  
Yao Li ◽  
Damir Kračun ◽  
Christopher M. Dustin ◽  
Mohamed El Massry ◽  
Shuai Yuan ◽  
...  

In an aging population, intense interest has shifted toward prolonging health span. Mounting evidence suggests that cellular reactive species are propagators of cell damage, inflammation, and cellular senescence. Thus, such species have emerged as putative provocateurs and targets for senolysis, and a clearer understanding of their molecular origin and regulation is of paramount importance. In an inquiry into signaling triggered by aging and proxy instigator, hyperglycemia, we show that NADPH Oxidase (NOX) drives cell DNA damage and alters nuclear envelope integrity, inflammation, tissue dysfunction, and cellular senescence in mice and humans with similar causality. Most notably, selective NOX1 inhibition rescues age-impaired blood flow and angiogenesis, vasodilation, and the endothelial cell wound response. Indeed, NOX1i delivery in vivo completely reversed age-impaired hind-limb blood flow and angiogenesis while disrupting a NOX1-IL-6 senescence-associated secretory phenotype (SASP) proinflammatory signaling loop. Relevant to its comorbidity with age, clinical samples from diabetic versus nondiabetic subjects reveal as operant this NOX1-mediated vascular senescence and inflammation in humans. On a mechanistic level, our findings support a previously unidentified role for IL-6 in this feedforward inflammatory loop and peroxisome proliferator–activated receptor gamma (PPARγ) down-regulation as inversely modulating p65-mediated NOX1 transcription. Targeting this previously unidentified NOX1-SASP signaling axis in aging is predicted to be an effective strategy for mitigating senescence in the vasculature and other organ systems.

2008 ◽  
Vol 56 (2) ◽  
pp. 534-538 ◽  
Author(s):  
Patricia J. Sime

Pulmonary fibrosis is characterized by the accumulation of fibroblasts, myofibroblasts, collagen, and other extracellular matrix proteins in the interstitium of the lung, with subsequent scarring and destruction of the alveolar capillary interface. In some cases, pulmonary fibrosis is preceded by lung inflammation and can be treated with anti-inflammatory therapies. However, idiopathic pulmonary fibrosis is characterized by a relative paucity of underlying inflammation and currently has no effective treatment. There is increasing evidence that the transcription factor peroxisome proliferator-activated receptor (PPAR) γ plays an important role in controlling cell differentiation and that PPARγ ligands can modify inflammatory and fibrotic responses. Peroxisome proliferator-activated receptor γ ligands, including the thiazolidinedione class of antidiabetic drugs and novel triterpenoid compounds derived from oleanic acid, inhibit TGF-β-stimulated profibrotic differentiation of lung fibroblasts in vitro and reduce lung scarring in animal models of fibrosis. The mechanism of action of the PPARγ ligands is under investigation but seems to involve both PPARγ-dependent and PPARγ-independent pathways. These in vitro and in vivo data highlight the potentially exciting role of PPARγ ligands as novel therapies for fibrosis of the lung and other organ systems prone to scarring. Many of the synthetic PPARγ ligands are orally active, and several are currently available and Food Drug Administration approved for use in therapy of type 2 diabetes. Further research is urgently required to more clearly elucidate the mechanism of action of these drugs and to develop more potent antifibrotic agents for patients with scarring diseases for whom there are currently few effective therapies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
KyeongJin Kim ◽  
Jin Ku Kang ◽  
Young Hoon Jung ◽  
Sang Bae Lee ◽  
Raffaela Rametta ◽  
...  

AbstractIncreased adiposity confers risk for systemic insulin resistance and type 2 diabetes (T2D), but mechanisms underlying this pathogenic inter-organ crosstalk are incompletely understood. We find PHLPP2 (PH domain and leucine rich repeat protein phosphatase 2), recently identified as the Akt Ser473 phosphatase, to be increased in adipocytes from obese mice. To identify the functional consequence of increased adipocyte PHLPP2 in obese mice, we generated adipocyte-specific PHLPP2 knockout (A-PHLPP2) mice. A-PHLPP2 mice show normal adiposity and glucose metabolism when fed a normal chow diet, but reduced adiposity and improved whole-body glucose tolerance as compared to Cre- controls with high-fat diet (HFD) feeding. Notably, HFD-fed A-PHLPP2 mice show increased HSL phosphorylation, leading to increased lipolysis in vitro and in vivo. Mobilized adipocyte fatty acids are oxidized, leading to increased peroxisome proliferator-activated receptor alpha (PPARα)-dependent adiponectin secretion, which in turn increases hepatic fatty acid oxidation to ameliorate obesity-induced fatty liver. Consistently, adipose PHLPP2 expression is negatively correlated with serum adiponectin levels in obese humans. Overall, these data implicate an adipocyte PHLPP2-HSL-PPARα signaling axis to regulate systemic glucose and lipid homeostasis, and suggest that excess adipocyte PHLPP2 explains decreased adiponectin secretion and downstream metabolic consequence in obesity.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Wei Zhu ◽  
Hongyang Zhao ◽  
Fenfen Xu ◽  
Bin Huang ◽  
Xiaojing Dai ◽  
...  

Abstract Background Fenofibrate is a fibric acid derivative known to have a lipid-lowering effect. Although fenofibrate-induced peroxisome proliferator-activated receptor alpha (PPARα) transcription activation has been shown to play an important role in the malignant progression of gliomas, the underlying mechanisms are poorly understood. Methods In this study, we analyzed TCGA database and found that there was a significant negative correlation between the long noncoding RNA (lncRNA) HOTAIR and PPARα. Then, we explored the molecular mechanism by which lncRNA HOTAIR regulates PPARα in cell lines in vitro and in a nude mouse glioma model in vivo and explored the effect of the combined application of HOTAIR knockdown and fenofibrate treatment on glioma invasion. Results For the first time, it was shown that after knockdown of the expression of HOTAIR in gliomas, the expression of PPARα was significantly upregulated, and the invasion and proliferation ability of gliomas were obviously inhibited. Then, glioma cells were treated with both the PPARα agonist fenofibrate and si-HOTAIR, and the results showed that the proliferation and invasion of glioma cells were significantly inhibited. Conclusions Our results suggest that HOTAIR can negatively regulate the expression of PPARα and that the combination of fenofibrate and si-HOTAIR treatment can significantly inhibit the progression of gliomas. This introduces new ideas for the treatment of gliomas.


2021 ◽  
Vol 22 (9) ◽  
pp. 4670
Author(s):  
Cinzia Buccoliero ◽  
Manuela Dicarlo ◽  
Patrizia Pignataro ◽  
Francesco Gaccione ◽  
Silvia Colucci ◽  
...  

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) is a protein that promotes transcription of numerous genes, particularly those responsible for the regulation of mitochondrial biogenesis. Evidence for a key role of PGC1α in bone metabolism is very recent. In vivo studies showed that PGC1α deletion negatively affects cortical thickness, trabecular organization and resistance to flexion, resulting in increased risk of fracture. Furthermore, in a mouse model of bone disease, PGC1α activation stimulates osteoblastic gene expression and inhibits atrogene transcription. PGC1α overexpression positively affects the activity of Sirtuin 3, a mitochondrial nicotinammide adenina dinucleotide (NAD)-dependent deacetylase, on osteoblastic differentiation. In vitro, PGC1α overexpression prevents the reduction of mitochondrial density, membrane potential and alkaline phosphatase activity caused by Sirtuin 3 knockdown in osteoblasts. Moreover, PGC1α influences the commitment of skeletal stem cells towards an osteogenic lineage, while negatively affects marrow adipose tissue accumulation. In this review, we will focus on recent findings about PGC1α action on bone metabolism, in vivo and in vitro, and in pathologies that cause bone loss, such as osteoporosis and type 2 diabetes.


2017 ◽  
Vol 38 (1) ◽  
Author(s):  
Kewei Xie ◽  
Mingli Zhu ◽  
Peng Xiang ◽  
Xiaohuan Chen ◽  
Ayijiaken Kasimumali ◽  
...  

ABSTRACT Previous work showed that the activation of protein kinase A (PKA) signaling promoted mitochondrial fusion and prevented podocyte apoptosis. The cAMP response element binding protein (CREB) is the main downstream transcription factor of PKA signaling. Here we show that the PKA agonist 8-(4-chlorophenylthio)adenosine 3′,5′-cyclic monophosphate–cyclic AMP (pCPT-cAMP) prevented the production of adriamycin (ADR)-induced reactive oxygen species and apoptosis in podocytes, which were inhibited by CREB RNA interference (RNAi). The activation of PKA enhanced mitochondrial function and prevented the ADR-induced decrease of mitochondrial respiratory chain complex I subunits, NADH-ubiquinone oxidoreductase complex (ND) 1/3/4 genes, and protein expression. Inhibition of CREB expression alleviated pCPT-cAMP-induced ND3, but not the recovery of ND1/4 protein, in ADR-treated podocytes. In addition, CREB RNAi blocked the pCPT-cAMP-induced increase in ATP and the expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1-α). The chromatin immunoprecipitation assay showed enrichment of CREB on PGC1-α and ND3 promoters, suggesting that these promoters are CREB targets. In vivo, both an endogenous cAMP activator (isoproterenol) and pCPT-cAMP decreased the albumin/creatinine ratio in mice with ADR nephropathy, reduced glomerular oxidative stress, and retained Wilm's tumor suppressor gene 1 (WT-1)-positive cells in glomeruli. We conclude that the upregulation of mitochondrial respiratory chain proteins played a partial role in the protection of PKA/CREB signaling.


2000 ◽  
Vol 164 (2) ◽  
pp. 1046-1054 ◽  
Author(s):  
Rolf Thieringer ◽  
Judy E. Fenyk-Melody ◽  
Cheryl B. Le Grand ◽  
Beverly A. Shelton ◽  
Patricia A. Detmers ◽  
...  

2009 ◽  
Vol 284 (24) ◽  
pp. 16541-16552 ◽  
Author(s):  
Üzen Savas ◽  
Daniel E. W. Machemer ◽  
Mei-Hui Hsu ◽  
Pryce Gaynor ◽  
Jerome M. Lasker ◽  
...  

CYP4A11 transgenic mice (CYP4A11 Tg) were generated to examine in vivo regulation of the human CYP4A11 gene. Expression of CYP4A11 in mice yields liver and kidney P450 4A11 levels similar to those found in the corresponding human tissues and leads to an increased microsomal capacity for ω-hydroxylation of lauric acid. Fasted CYP4A11 Tg mice exhibit 2–3-fold increases in hepatic CYP4A11 mRNA and protein, and this response is absent in peroxisome proliferator-activated receptor α (PPARα) null mice. Dietary administration of either of the PPARα agonists, fenofibrate or clofibric acid, increases hepatic and renal CYP4A11 levels by 2–3-fold, and these responses were also abrogated in PPARα null mice. Basal liver CYP4A11 levels are reduced differentially in PPARα−/− females (>95%) and males (<50%) compared with PPARα−/+ mice. Quantitative and temporal differences in growth hormone secretion are known to alter hepatic lipid metabolism and to underlie sexually dimorphic gene expression, respectively. Continuous infusion of low levels of growth hormone reduced CYP4A11 expression by 50% in PPARα-proficient male and female transgenic mice. A larger decrease was observed for the expression of CYP4A11 in PPARα−/− CYP4A11 Tg male mice to levels similar to that of female PPARα-deficient mice. These results suggest that PPARα contributes to the maintenance of basal CYP4A11 expression and mediates CYP4A11 induction in response to fibrates or fasting. In contrast, increased exposure to growth hormone down-regulates CYP4A11 expression in liver.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Christian Werner ◽  
Stephan H Schirmer ◽  
Valerie Pavlickova ◽  
Michael Böhm ◽  
Ulrich Laufs

Objective: Peroxisome proliferator-activated receptor (PPAR)-α and -γ agonists modify lipid and glucose metabolism. The aim of the study was to characterize the effects of the dual PPAR-α/γ agonist aleglitazar on endothelial function, neoangiogenesis and arteriogenesis in mice and on human endothelial progenitor cells (EPC). Methods and Results: Male C57Bl/6 wild-type (WT, normal chow) and apolipoprotein E-deficient (apoE-/-) mice on Western-type diet (WTD) were treated with aleglitazar (10 mg/kg i.p.) or vehicle by daily injection. Hindlimb ischemia was induced by right femoral artery ligation (FAL). ApoE-/- mice on WTD treated with aleglitazar before FAL were characterized by an improvement of endothelial-dependent laser Doppler perfusion (right/left foot ratio 0.40±0.03) 1 week after FAL compared to controls (R/L foot ratio 0.24±0.01; p<0.001). Collateral-dependent perfusion measured under conditions of maximal vasodilatation 1 week after FAL using fluorescent microspheres was impaired in apoE-/- on WTD compared to WT mice (R/L leg ratio in WT 78±13 vs. apoE-/- 56±6; p<0.001) and was normalized by aleglitazar treatment. Neoangiogenesis was measured in-vivo by subcutaneously implanting discs covered with cell-impermeable filters. The vascularized area of the discs was quantified after 14 days by perfusion of the animals with space-filling fluorescent microspheres. Aleglitazar increased neoangiogenesis in WT mice by 178±18% compared to vehicle (p<0.05). Endothelium-dependent relaxation of aortic rings was impaired in apoE-/- mice on WTD for 6 weeks (relaxation to 52±5% of max. contraction) compared to WT animals (relaxation to 18±5% of max. contraction) (p<0.001). Aleglitazar treatment improved endothelial function (relaxation to 39±5% of max. contraction; p<0.05). In parallel, number and function of EPC were improved in mice. Studies in human EPC showed that 1) aleglitazar’s effects were mediated by both PPAR-α and -γ signalling and Akt and 2) migration and colony forming units were up-regulated by aleglitazar in cultivated EPC from CAD patients. Conclusion: The study provides evidence for beneficial effects of the dual PPAR-α/γ agonist aleglitazar on vascular function in addition to or mediated by its metabolic actions.


Sign in / Sign up

Export Citation Format

Share Document