scholarly journals Anomalous mechanics of Zn2+-modified fibrin networks

2021 ◽  
Vol 118 (10) ◽  
pp. e2020541118
Author(s):  
Jing Xia ◽  
Li-Heng Cai ◽  
Huayin Wu ◽  
Frederick C. MacKintosh ◽  
David A. Weitz

Fibrin is the main component of blood clots. The mechanical properties of fibrin are therefore of critical importance in successful hemostasis. One of the divalent cations released by platelets during hemostasis is Zn2+; however, its effect on the network structure of fibrin gels and on the resultant mechanical properties remains poorly understood. Here, by combining mechanical measurements with three-dimensional confocal microscopy imaging, we show that Zn2+ can tune the fibrin network structure and alter its mechanical properties. In the presence of Zn2+, fibrin protofibrils form large bundles that cause a coarsening of the fibrin network due to an increase in fiber diameter and reduction of the total fiber length. We further show that the protofibrils in these bundles are loosely coupled to one another, which results in a decrease of the elastic modulus with increasing Zn2+ concentrations. We explore the elastic properties of these networks at both low and high stress: At low stress, the elasticity originates from pulling the thermal slack out of the network, and this is consistent with the thermal bending of the fibers. By contrast, at high stress, the elasticity exhibits a common master curve consistent with the stretching of individual protofibrils. These results show that the mechanics of a fibrin network are closely correlated with its microscopic structure and inform our understanding of the structure and physical mechanisms leading to defective or excessive clot stiffness.

2021 ◽  
Vol 22 (7) ◽  
pp. 3391
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska ◽  
Ewa Olewnik-Kruszkowska ◽  
Katarzyna Reczyńska ◽  
Elżbieta Pamuła

The aim of this work was to compare physicochemical properties of three dimensional scaffolds based on silk fibroin, collagen and chitosan blends, cross-linked with dialdehyde starch (DAS) and dialdehyde chitosan (DAC). DAS was commercially available, while DAC was obtained by one-step synthesis. Structure and physicochemical properties of the materials were characterized using Fourier transfer infrared spectroscopy with attenuated total reflectance device (FTIR-ATR), swelling behavior and water content measurements, porosity and density observations, scanning electron microscopy imaging (SEM), mechanical properties evaluation and thermogravimetric analysis. Metabolic activity with AlamarBlue assay and live/dead fluorescence staining were performed to evaluate the cytocompatibility of the obtained materials with MG-63 osteoblast-like cells. The results showed that the properties of the scaffolds based on silk fibroin, collagen and chitosan can be modified by chemical cross-linking with DAS and DAC. It was found that DAS and DAC have different influence on the properties of biopolymeric scaffolds. Materials cross-linked with DAS were characterized by higher swelling ability (~4000% for DAS cross-linked materials; ~2500% for DAC cross-linked materials), they had lower density (Coll/CTS/30SF scaffold cross-linked with DAS: 21.8 ± 2.4 g/cm3; cross-linked with DAC: 14.6 ± 0.7 g/cm3) and lower mechanical properties (maximum deformation for DAC cross-linked scaffolds was about 69%; for DAS cross-linked scaffolds it was in the range of 12.67 ± 1.51% and 19.83 ± 1.30%) in comparison to materials cross-linked with DAC. Additionally, scaffolds cross-linked with DAS exhibited higher biocompatibility than those cross-linked with DAC. However, the obtained results showed that both types of scaffolds can provide the support required in regenerative medicine and tissue engineering. The scaffolds presented in the present work can be potentially used in bone tissue engineering to facilitate healing of small bone defects.


1988 ◽  
Vol 59 (03) ◽  
pp. 500-503 ◽  
Author(s):  
Gerard Marx

SummaryThe mechanical properties of fibrin and protofibrin gels in the presence of physiologic levels of Ca(II) and Zn(II) are described. As monitored with a thrombelastograph, Ca(II) (0.5–2 mM) increases the rate of development and the maximum level of gel elastic modulus (G) of fibrin and protofibrin gels. Zn(II) (10–50 μM) decreases the elastic modulus of those gels, even in the presence of a large excess of Ca(II). This contrasts with the ability of both divalent cations to increase fibrin and protofibrin gel turbidity. Unlike the turbidity or fibre thickness of fibrin and protofibrin gels, both of which are increased by these cations, gel elasticity is increased by Ca(II) but decreased by Zn(II). h is demonstrated that Ca(II) and Zn(II) modulate fibrin and protofibrin gels independently of one another, and that they have opposing effects on the mechanical properties of the gels. The disparity between the visual (turbidity, TEM) and the mechanical (elasticity) properties of (proto)fibrin gels indicates the need for new conceptual and analytic paradigms.


2008 ◽  
Vol 6 (30) ◽  
pp. 1-10 ◽  
Author(s):  
Paul A Janmey ◽  
Jessamine P Winer ◽  
John W Weisel

Fibrin gels, prepared from fibrinogen and thrombin, the key proteins involved in blood clotting, were among the first biomaterials used to prevent bleeding and promote wound healing. The unique polymerization mechanism of fibrin, which allows control of gelation times and network architecture by variation in reaction conditions, allows formation of a wide array of soft substrates under physiological conditions. Fibrin gels have been extensively studied rheologically in part because their nonlinear elasticity, characterized by soft compliance at small strains and impressive stiffening to resist larger deformations, appears essential for their function as haemostatic plugs and as matrices for cell migration and wound healing. The filaments forming a fibrin network are among the softest in nature, allowing them to deform to large extents and stiffen but not break. The biochemical and mechanical properties of fibrin have recently been exploited in numerous studies that suggest its potential for applications in medicine and bioengineering.


2009 ◽  
Vol 102 (12) ◽  
pp. 1169-1175 ◽  
Author(s):  
Kathryn Gersh ◽  
Chandrasekaran Nagaswami ◽  
John Weisel

SummaryAlthough many in vitro fibrin studies are performed with plasma, in vivo clots and thrombi contain erythrocytes, or red blood cells (RBCs).To determine the effects of RBCs on fibrin clot structure and mechanical properties, we compared plasma clots without RBCs to those prepared with low (2 vol%), intermediate (5-10 vol%), or high (≥20 vol%) numbers of RBCs. By confocal microscopy, we found that low RBC concentrations had little effect on clot structure. Intermediate RBC concentrations caused heterogeneity in the fiber network with pockets of densely packed fibers alongside regions with few fibers. With high levels of RBCs, fibers arranged more uniformly but loosely around the cells. Scanning electron micrographs demonstrated an uneven distribution of RBCs throughout the clot and a significant increase in fiber diameter upon RBC incorporation. While permeability was not affected by RBC addition, at 20% or higher RBCs, the ratio of viscous modulus (G′′) to elastic modulus (G′) increased significantly over that of a clot without any RBCs. RBCs triggered variability in the fibrin network structure, individual fiber characteristics, and overall clot viscoelasticity compared to the absence of cells. These results are important for understanding in vivo clots and thrombi.


Soft Matter ◽  
2011 ◽  
Vol 7 (10) ◽  
pp. 4983 ◽  
Author(s):  
Eunjung Kim ◽  
Oleg V. Kim ◽  
Kellie R. Machlus ◽  
Xiaomin Liu ◽  
Timur Kupaev ◽  
...  

2019 ◽  
Vol 14 (8) ◽  
pp. 828-830 ◽  
Author(s):  
Weihua Meng ◽  
Weihong Wu ◽  
Weiwei Zhang ◽  
Luyao Cheng ◽  
Yunhong Jiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document