scholarly journals Myristoylation alone is sufficient for PKA catalytic subunits to associate with the plasma membrane to regulate neuronal functions

2021 ◽  
Vol 118 (15) ◽  
pp. e2021658118
Author(s):  
Wei-Hong Xiong ◽  
Maozhen Qin ◽  
Haining Zhong

Myristoylation is a posttranslational modification that plays diverse functional roles in many protein species. The myristate moiety is considered insufficient for protein–membrane associations unless additional membrane-affinity motifs, such as a stretch of positively charged residues, are present. Here, we report that the electrically neutral N-terminal fragment of the protein kinase A catalytic subunit (PKA-C), in which myristoylation is the only functional motif, is sufficient for membrane association. This myristoylation can associate a fraction of PKA-C molecules or fluorescent proteins (FPs) to the plasma membrane in neuronal dendrites. The net neutral charge of the PKA-C N terminus is evolutionally conserved, even though its membrane affinity can be readily tuned by changing charges near the myristoylation site. The observed membrane association, while moderate, is sufficient to concentrate PKA activity at the membrane by nearly 20-fold and is required for PKA regulation of AMPA receptors at neuronal synapses. Our results indicate that myristoylation may be sufficient to drive functionally significant membrane association in the absence of canonical assisting motifs. This provides a revised conceptual base for the understanding of how myristoylation regulates protein functions.

2020 ◽  
Author(s):  
Wei-Hong Xiong ◽  
Maozhen Qin ◽  
Haining Zhong

AbstractMyristoylation is a post-translational modification that plays diverse functional roles in many protein species. The myristate moiety is considered insufficient for protein-membrane associations unless additional membrane-affinity motifs, such as a stretch of positively charged residues, are present. Here, we report that the electrically neutral N-terminal fragment of the protein kinase A catalytic subunit (PKA-C), in which myristoylation is the only functional motif, is sufficient for membrane association. This myristoylation can associate a fraction of PKA-C molecules or fluorescent proteins (FPs) to the plasma membrane in neuronal dendrites. The net neutral charge of PKA-C is evolutionally conserved, even though its membrane affinity can be readily tuned by changing charges near the myristoylation site. The observed membrane association, while moderate, is sufficient to concentrate PKA activity at the membrane by nearly 20-fold, and is required for PKA regulation of AMPA receptors at neuronal synapses. Our results indicate that myristoylation alone may be sufficient to drive functionally significant membrane association in the absence of assisting motifs. This provides a revised foundation for the understanding of how myristoylation regulates protein functions.


2007 ◽  
Vol 409 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Katia Monastyrskaya ◽  
Fabian Tschumi ◽  
Eduard B. Babiychuk ◽  
Deborah Stroka ◽  
Annette Draeger

The pHi (intracellular pH) is an important physiological parameter which is altered during hypoxia and ischaemia, pathological conditions accompanied by a dramatic decrease in pHi. Sensors of pHi include ion transport systems which control intracellular Ca2+ gradients and link changes in pHi to functions as diverse as proliferation and apoptosis. The annexins are a protein family characterized by Ca2+-dependent interactions with cellular membranes. Additionally, in vitro evidence points to the existence of pH-dependent, Ca2+-independent membrane association of several annexins. We show that hypoxia promotes the interaction of the recombinant annexin A2–S100A10 (p11) and annexin A6 with the plasma membrane. We have investigated in vivo the influence of the pHi on the membrane association of human annexins A1, A2, A4, A5 and A6 tagged with fluorescent proteins, and characterized this interaction for endogenous annexins present in smooth muscle and HEK (human embryonic kidney)-293 cells biochemically and by immunofluorescence microscopy. Our results show that annexin A6 and the heterotetramer A2–S100A10 (but not annexins A1, A4 and A5) interact independently of Ca2+ with the plasma membrane at pH 6.2 and 6.6. The dimerization of annexin A2 within the annexin A2–S100A10 complex is essential for the pH-dependent membrane interaction at this pH range. The pH-induced membrane binding of annexins A6 and A2–S100A10 might have consequences for their functions as membrane organizers and channel modulators.


2019 ◽  
Vol 93 (11) ◽  
Author(s):  
Olivier Leymarie ◽  
Leslie Lepont ◽  
Margaux Versapuech ◽  
Delphine Judith ◽  
Sophie Abelanet ◽  
...  

ABSTRACTHIV-1 infection of macrophages leads to the sequestration of newly formed viruses in intracellular plasma membrane-connected structures termed virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The cellular restriction factor bone marrow stromal cell antigen 2 (BST2), which prevents HIV-1 dissemination by tethering budding viral particles at the plasma membrane, can be found in VCCs. The HIV-1 accessory protein Vpu counteracts the restriction factor BST2 by downregulating its expression and removing it from viral budding sites. Numerous studies described these Vpu countermeasures in CD4+T cells or model cell lines, but the interplay between Vpu and BST2 in VCC formation and HIV-1 production in macrophages is less explored. Here, we show that Vpu expression in HIV-1-infected macrophages enhances viral release. This effect is related to Vpu’s ability to circumvent BST2 antiviral activity. We show that in absence of Vpu, BST2 is enriched in VCCs and colocalizes with capsid p24, whereas Vpu expression significantly reduces the presence of BST2 in these compartments. Furthermore, our data reveal that BST2 is dispensable for the formation of VCCs and that Vpu expression impacts the volume of these compartments. This Vpu activity partly depends on BST2 expression and requires the integrity of the Vpu transmembrane domain, the dileucine-like motif E59XXXLV64and phosphoserines 52 and 56 of Vpu. Altogether, these results highlight that Vpu controls the volume of VCCs and promotes HIV-1 release from infected macrophages.IMPORTANCEHIV-1 infection of macrophages leads to the sequestration of newly formed viruses in virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The restriction factor BST2, which prevents HIV-1 dissemination by tethering budding viral particles, can be found in VCCs. The HIV-1 Vpu protein counteracts BST2. This study explores the interplay between Vpu and BST2 in the viral protein functions on HIV-1 release and viral particle sequestration in VCCs in macrophages. The results show that Vpu controls the volume of VCCs and favors viral particle release. These Vpu functions partly depend on Vpu’s ability to antagonize BST2. This study highlights that the transmembrane domain of Vpu and two motifs of the Vpu cytoplasmic domain are required for these functions. These motifs were notably involved in the control of the volume of VCCs by Vpu but were dispensable for the prevention of the specific accumulation of BST2 in these structures.


2007 ◽  
Vol 27 (9) ◽  
pp. 3456-3469 ◽  
Author(s):  
Shaohui Huang ◽  
Larry M. Lifshitz ◽  
Christine Jones ◽  
Karl D. Bellve ◽  
Clive Standley ◽  
...  

ABSTRACT Total internal reflection fluorescence (TIRF) microscopy reveals highly mobile structures containing enhanced green fluorescent protein-tagged glucose transporter 4 (GLUT4) within a zone about 100 nm beneath the plasma membrane of 3T3-L1 adipocytes. We developed a computer program (Fusion Assistant) that enables direct analysis of the docking/fusion kinetics of hundreds of exocytic fusion events. Insulin stimulation increases the fusion frequency of exocytic GLUT4 vesicles by ∼4-fold, increasing GLUT4 content in the plasma membrane. Remarkably, insulin signaling modulates the kinetics of the fusion process, decreasing the vesicle tethering/docking duration prior to membrane fusion. In contrast, the kinetics of GLUT4 molecules spreading out in the plasma membrane from exocytic fusion sites is unchanged by insulin. As GLUT4 accumulates in the plasma membrane, it is also immobilized in punctate structures on the cell surface. A previous report suggested these structures are exocytic fusion sites (Lizunov et al., J. Cell Biol. 169:481-489, 2005). However, two-color TIRF microscopy using fluorescent proteins fused to clathrin light chain or GLUT4 reveals these structures are clathrin-coated patches. Taken together, these data show that insulin signaling accelerates the transition from docking of GLUT4-containing vesicles to their fusion with the plasma membrane and promotes GLUT4 accumulation in clathrin-based endocytic structures on the plasma membrane.


2015 ◽  
Vol 89 (23) ◽  
pp. 11750-11760 ◽  
Author(s):  
Timothy K. Soh ◽  
Sean P. J. Whelan

ABSTRACTVesicular stomatitis virus (VSV) assembly requires condensation of the viral ribonucleoprotein (RNP) core with the matrix protein (M) during budding from the plasma membrane. The RNP core comprises the negative-sense genomic RNA completely coated by the nucleocapsid protein (N) and associated by a phosphoprotein (P) with the large polymerase protein (L). To study the assembly of single viral particles, we tagged M and P with fluorescent proteins. We selected from a library of viruses with insertions in the M gene a replication-competent virus containing a fluorescent M and combined that with our previously described virus containing fluorescent P. Virus particles containing those fusions maintained the same bullet shape appearance as wild-type VSV but had a modest increase in particle length, reflecting the increased genome size. Imaging of the released particles revealed a variation in the amount of M and P assembled into the virions, consistent with a flexible packaging mechanism. We used the recombinants to further study the importance of the late domains in M, which serve to recruit the endosomal sorting complex required for transport (ESCRT) machinery during budding. Mutations in late domains resulted in the accumulation of virions that failed to pinch off from the plasma membrane. Imaging of single virions released from cells that were coinfected with M tagged with enhanced green fluorescent protein and M tagged with mCherry variants in which the late domains of one virus were inactivated by mutation showed a strong bias against the incorporation of the late-domain mutant into the released virions. In contrast, the intracellular expression and membrane association of the two variants were unaltered. These studies provide new tools for imaging particle assembly and enhance our resolution of existing models for assembly of VSV.IMPORTANCEAssembly of vesicular stomatitis virus (VSV) particles requires the separate trafficking of the viral replication machinery, a matrix protein (M) and a glycoprotein, to the plasma membrane. The matrix protein contains a motif termed a “late domain” that engages the host endosomal sorting complex required for transport (ESCRT) machinery to facilitate the release of viral particles. Inactivation of the late domains through mutation results in the accumulation of virions arrested at the point of release. In the study described here, we developed new tools to study VSV assembly by fusing fluorescent proteins to M and to a constituent of the replication machinery, the phosphoprotein (P). We used those tools to show that the late domains of M are required for efficient incorporation into viral particles and that the particles contain a variable quantity of M and P.


2005 ◽  
Vol 25 (15) ◽  
pp. 6722-6733 ◽  
Author(s):  
Sandrine Roy ◽  
Sarah Plowman ◽  
Barak Rotblat ◽  
Ian A. Prior ◽  
Cornelia Muncke ◽  
...  

ABSTRACT H-ras is anchored to the plasma membrane by two palmitoylated cysteine residues, Cys181 and Cys184, operating in concert with a C-terminal S-farnesyl cysteine carboxymethylester. Here we demonstrate that the two palmitates serve distinct biological roles. Monopalmitoylation of Cys181 is required and sufficient for efficient trafficking of H-ras to the plasma membrane, whereas monopalmitoylation of Cys184 does not permit efficient trafficking beyond the Golgi apparatus. However, once at the plasma membrane, monopalmitoylation of Cys184 supports correct GTP-regulated lateral segregation of H-ras between cholesterol-dependent and cholesterol-independent microdomains. In contrast, monopalmitoylation of Cys181 dramatically reverses H-ras lateral segregation, driving GTP-loaded H-ras into cholesterol-dependent microdomains. Intriguingly, the Cys181 monopalmitoylated H-ras anchor emulates the GTP-regulated microdomain interactions of N-ras. These results identify N-ras as the Ras isoform that normally signals from lipid rafts but also reveal that spacing between palmitate and prenyl groups influences anchor interactions with the lipid bilayer. This concept is further supported by the different plasma membrane affinities of the monopalmitoylated anchors: Cys181-palmitate is equivalent to the dually palmitoylated wild-type anchor, whereas Cys184-palmitate is weaker. Thus, membrane affinity of a palmitoylated anchor is a function both of the hydrophobicity of the lipid moieties and their spatial organization. Finally we show that the plasma membrane affinity of monopalmitoylated anchors is absolutely dependent on cholesterol, identifying a new role for cholesterol in promoting interactions with the raft and nonraft plasma membrane.


1998 ◽  
Vol 9 (8) ◽  
pp. 1981-1994 ◽  
Author(s):  
Wolfgang Nagel ◽  
Pierre Schilcher ◽  
Lutz Zeitlmann ◽  
Waldemar Kolanus

Recruitment of intracellular proteins to the plasma membrane is a commonly found requirement for the initiation of signal transduction events. The recently discovered pleckstrin homology (PH) domain, a structurally conserved element found in ∼100 signaling proteins, has been implicated in this function, because some PH domains have been described to be involved in plasma membrane association. Furthermore, several PH domains bind to the phosphoinositides phosphatidylinositol-(4,5)-bisphosphate and phosphatidylinositol-(3,4,5)-trisphosphate in vitro, however, mostly with low affinity. It is unclear how such weak interactions can be responsible for observed membrane binding in vivo as well as the resulting biological phenomena. Here, we investigate the structural and functional requirements for membrane association of cytohesin-1, a recently discovered regulatory protein of T cell adhesion. We demonstrate that both the PH domain and the adjacent carboxyl-terminal polybasic sequence of cytohesin-1 (c domain) are necessary for plasma membrane association and biological function, namely interference with Jurkat cell adhesion to intercellular adhesion molecule 1. Biosensor measurements revealed that phosphatidylinositol-(3,4,5)-trisphosphate binds to the PH domain and c domain together with high affinity (100 nM), whereas the isolated PH domain has a substantially lower affinity (2–3 μM). The cooperativity of both elements appears specific, because a chimeric protein, consisting of the c domain of cytohesin-1 and the PH domain of the β-adrenergic receptor kinase does not associate with membranes, nor does it inhibit adhesion. Moreover, replacement of the c domain of cytohesin-1 with a palmitoylation–isoprenylation motif partially restored the biological function, but the specific targeting to the plasma membrane was not retained. Thus we conclude that two elements of cytohesin-1, the PH domain and the c domain, are required and sufficient for membrane association. This appears to be a common mechanism for plasma membrane targeting of PH domains, because we observed a similar functional cooperativity of the PH domain of Bruton’s tyrosine kinase with the adjacent Bruton’s tyrosine kinase motif, a novel zinc-containing fold.


2019 ◽  
Author(s):  
Stephanie Leon Quinonez ◽  
Ian R. Brown ◽  
Helen E. Grimsley ◽  
Jindrich Cinatl ◽  
Martin Michaelis ◽  
...  

AbstractExosomes are small vesicles secreted by the cells, which mediate intercellular signalling and systemic physiological processes. Exosomes are known to originate from the intraluminal vesicles of the multivesicular endosome that fuses with the plasma membrane. We found that the non-small cell lung cancer (NSCLC) cell lines, HCC15 and A549, secreted exosomes with typical morphology and protein contents. Unexpectedly, transmission electron microscopy images indicated that the cells formed multivesicular structures that protruded from the plasma membrane and ruptured to release the exosomes. There were smooth multivesicular structures surrounded by an ordinary looking membrane, multivesicular structures coated by an electron dense layer with regular spacing pattern, and intermediate forms that combined elements of both. Electron microscopy images suggested that exosomes are release from these structures by burst events and not by the conventional fusion process. The molecular details of this novel mechanism for membrane association, deformation and fusion is to be unveiled in the future.


Sign in / Sign up

Export Citation Format

Share Document