scholarly journals Thermodynamic profile of mutual subunit control in a heteromeric receptor

2021 ◽  
Vol 118 (30) ◽  
pp. e2100469118
Author(s):  
Jana Schirmeyer ◽  
Sabine Hummert ◽  
Thomas Eick ◽  
Eckhard Schulz ◽  
Tina Schwabe ◽  
...  

Cyclic nucleotide-gated (CNG) ion channels of olfactory neurons are tetrameric membrane receptors that are composed of two A2 subunits, one A4 subunit, and one B1b subunit. Each subunit carries a cyclic nucleotide-binding domain in the carboxyl terminus, and the channels are activated by the binding of cyclic nucleotides. The mechanism of cooperative channel activation is still elusive. Using a complete set of engineered concatenated olfactory CNG channels, with all combinations of disabled binding sites and fit analyses with systems of allosteric models, the thermodynamics of microscopic cooperativity for ligand binding was subunit- and state-specifically quantified. We show, for the closed channel, that preoccupation of each of the single subunits increases the affinity of each other subunit with a Gibbs free energy (ΔΔG) of ∼−3.5 to ∼−5.5 kJ ⋅ mol−1, depending on the subunit type, with the only exception that a preoccupied opposite A2 subunit has no effect on the other A2 subunit. Preoccupation of two neighbor subunits of a given subunit causes the maximum affinity increase with ΔΔG of ∼−9.6 to ∼−9.9 kJ ⋅ mol−1. Surprisingly, triple preoccupation leads to fewer negative ΔΔG values for a given subunit as compared to double preoccupation. Channel opening increases the affinity of all subunits. The equilibrium constants of closed–open isomerizations systematically increase with progressive liganding. This work demonstrates, on the example of the heterotetrameric olfactory CNG channel, a strategy to derive detailed insights into the specific mutual control of the individual subunits in a multisubunit membrane receptor.

2017 ◽  
Vol 114 (17) ◽  
pp. 4430-4435 ◽  
Author(s):  
Zachary M. James ◽  
Andrew J. Borst ◽  
Yoni Haitin ◽  
Brandon Frenz ◽  
Frank DiMaio ◽  
...  

Cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-regulated (HCN) ion channels play crucial physiological roles in phototransduction, olfaction, and cardiac pace making. These channels are characterized by the presence of a carboxyl-terminal cyclic nucleotide-binding domain (CNBD) that connects to the channel pore via a C-linker domain. Although cyclic nucleotide binding has been shown to promote CNG and HCN channel opening, the precise mechanism underlying gating remains poorly understood. Here we used cryoEM to determine the structure of the intact LliK CNG channel isolated from Leptospira licerasiae—which shares sequence similarity to eukaryotic CNG and HCN channels—in the presence of a saturating concentration of cAMP. A short S4–S5 linker connects nearby voltage-sensing and pore domains to produce a non–domain-swapped transmembrane architecture, which appears to be a hallmark of this channel family. We also observe major conformational changes of the LliK C-linkers and CNBDs relative to the crystal structures of isolated C-linker/CNBD fragments and the cryoEM structures of related CNG, HCN, and KCNH channels. The conformation of our LliK structure may represent a functional state of this channel family not captured in previous studies.


2020 ◽  
Vol 117 (20) ◽  
pp. 10839-10847 ◽  
Author(s):  
Eric G. B. Evans ◽  
Jacob L. W. Morgan ◽  
Frank DiMaio ◽  
William N. Zagotta ◽  
Stefan Stoll

Cyclic nucleotide-gated (CNG) ion channels are essential components of mammalian visual and olfactory signal transduction. CNG channels open upon direct binding of cyclic nucleotides (cAMP and/or cGMP), but the allosteric mechanism by which this occurs is incompletely understood. Here, we employed double electron-electron resonance (DEER) spectroscopy to measure intersubunit distance distributions in SthK, a bacterial CNG channel from Spirochaeta thermophila. Spin labels were introduced into the SthK C-linker, a domain that is essential for coupling cyclic nucleotide binding to channel opening. DEER revealed an agonist-dependent conformational change in which residues of the B′-helix displayed outward movement with respect to the symmetry axis of the channel in the presence of the full agonist cAMP, but not with the partial agonist cGMP. This conformational rearrangement was observed both in detergent-solubilized SthK and in channels reconstituted into lipid nanodiscs. In addition to outward movement of the B′-helix, DEER-constrained Rosetta structural models suggest that channel activation involves upward translation of the cytoplasmic domain and formation of state-dependent interactions between the C-linker and the transmembrane domain. Our results demonstrate a previously unrecognized structural transition in a CNG channel and suggest key interactions that may be responsible for allosteric gating in these channels.


1999 ◽  
Vol 113 (5) ◽  
pp. 601-620 ◽  
Author(s):  
Elizabeth R. Sunderman ◽  
William N. Zagotta

The cyclic nucleotide–gated (CNG) channel of retinal rod photoreceptor cells is an allosteric protein whose activation is coupled to a conformational change in the ligand-binding site. The bovine rod CNG channel can be activated by a number of different agonists, including cGMP, cIMP, and cAMP. These agonists span three orders of magnitude in their equilibrium constants for the allosteric transition. We recorded single-channel currents at saturating cyclic nucleotide concentrations from the bovine rod CNG channel expressed in Xenopus oocytes as homomultimers of α subunits. The median open probability was 0.93 for cGMP, 0.47 for cIMP, and 0.01 for cAMP. The channels opened to a single conductance level of 26–30 pS at +80 mV. Using signal processing methods based on hidden Markov models, we determined that two closed and one open states are required to explain the gating at saturating ligand concentrations. We determined the maximum likelihood rate constants for two gating schemes containing two closed (denoted C) and one open (denoted O) states. For the C ↔ C ↔ O scheme, all rate constants were dependent on cyclic nucleotide. For the C ↔ O ↔ C scheme, the rate constants for only one of the transitions were cyclic nucleotide dependent. The opening rate constant was fastest for cGMP, intermediate for cIMP, and slowest for cAMP, while the closing rate constant was fastest for cAMP, intermediate for cIMP, and slowest for cGMP. We propose that interactions between the purine ring of the cyclic nucleotide and the binding domain are partially formed at the time of the transition state for the allosteric transition and serve to reduce the transition state energy and stabilize the activated conformation of the channel. When 1 μM Ni2+ was applied in addition to cyclic nucleotide, the open time increased markedly, and the closed time decreased slightly. The interactions between H420 and Ni2+ occur primarily after the transition state for the allosteric transition.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Nisa Wongsamitkul ◽  
Vasilica Nache ◽  
Thomas Eick ◽  
Sabine Hummert ◽  
Eckhard Schulz ◽  
...  

Abstract In multimeric membrane receptors the cooperative action of the subunits prevents exact knowledge about the operation and the interaction of the individual subunits. We propose a method that permits quantification of ligand binding to and activation effects of the individual binding sites in a multimeric membrane receptor. The power of this method is demonstrated by gaining detailed insight into the subunit action in olfactory cyclic nucleotide-gated CNGA2 ion channels.


2008 ◽  
Vol 295 (3) ◽  
pp. C642-C652 ◽  
Author(s):  
Hamed Nazzari ◽  
Damiano Angoli ◽  
Sarah S. Chow ◽  
Gina Whitaker ◽  
Leisha Leclair ◽  
...  

Previous studies have suggested that a portion of the cyclic nucleotide-binding domain (CNBD) of the hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) “pacemaker” channel, composed of the A- and B-helices and the interceding β-barrel, confers two functions: inhibition of channel opening in response to hyperpolarization and promotion of cell surface expression. The sequence determinants required for each of these functions are unknown. In addition, the mechanism underlying plasma membrane targeting by this subdomain has been limitedly explored. Here we identify a four-amino acid motif (EEYP) in the B-helix that strongly promotes channel export from the endoplasmic reticulum (ER) and cell surface expression but does not contribute to the inhibition of channel opening. This motif augments a step in the trafficking pathway and/or the efficiency of correct folding and assembly.


Author(s):  
Christopher Pfleger ◽  
Jana Kusch ◽  
Mahesh Kondapuram ◽  
Tina Schwabe ◽  
Christian Sattler ◽  
...  

2008 ◽  
Vol 381 (3) ◽  
pp. 655-669 ◽  
Author(s):  
Stephen L. Altieri ◽  
Gina M. Clayton ◽  
William R. Silverman ◽  
Adrian O. Olivares ◽  
Enrique M. De La Cruz ◽  
...  

2017 ◽  
Vol 112 (3) ◽  
pp. 335a-336a
Author(s):  
Reinhard Seifert ◽  
Florian Windler ◽  
Wolfgang Bönigk ◽  
Heinz-Gerd Körschen ◽  
U. Benjamin Kaupp

FEBS Letters ◽  
2017 ◽  
Vol 591 (18) ◽  
pp. 2869-2878 ◽  
Author(s):  
Francisco Romero ◽  
Carmen Santana‐Calvo ◽  
Yoloxochitl Sánchez‐Guevara ◽  
Takuya Nishigaki

Sign in / Sign up

Export Citation Format

Share Document