scholarly journals Geometric frustration produces long-sought Bose metal phase of quantum matter

2021 ◽  
Vol 118 (46) ◽  
pp. e2100545118
Author(s):  
Anthony Hegg ◽  
Jinning Hou ◽  
Wei Ku

Two of the most prominent phases of bosonic matter are the superfluid with perfect flow and the insulator with no flow. A now decades-old mystery unexpectedly arose when experimental observations indicated that bosons could organize into the formation of an entirely different intervening third phase: the Bose metal with dissipative flow. The most viable theory for such a Bose metal to date invokes the use of the extrinsic property of impurity-based disorder; however, a generic intrinsic quantum Bose metal state is still lacking. We propose a universal homogeneous theory for a Bose metal in which geometric frustration confines the essential quantum coherence to a lower dimension. The result is a gapless insulator characterized by dissipative flow that vanishes in the low-energy limit. This failed insulator exemplifies a frustration-dominated regime that is only enhanced by additional scattering sources at low energy and therefore produces a Bose metal that thrives under realistic experimental conditions.

2021 ◽  
Vol 22 (15) ◽  
pp. 7879
Author(s):  
Yingxia Gao ◽  
Yi Zheng ◽  
Léon Sanche

The complex physical and chemical reactions between the large number of low-energy (0–30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.


Author(s):  
M. Ilyas ◽  
A. R. Athar ◽  
Bilal Masud

This study explores the interior geometry of static relativistic charged spheres in the background of a recently proposed modified [Formula: see text] gravity, where [Formula: see text] and [Formula: see text] are the Gauss–Bonnet (GB) invariant and trace of energy–momentum tensor, respectively. The GB gravity is the low-energy limit of superstring theories. The structures of specific relativistic charged spheres Vela [Formula: see text], [Formula: see text], and [Formula: see text] are studied in this theory of gravity. We analyzed several physical behaviors of these relativistic charged spheres with the help of observational data and investigated the various aspects like density profile, stresses, the distribution of charges, stability, etc.


2013 ◽  
Vol 124 ◽  
pp. 130-138 ◽  
Author(s):  
Jeffery A. Aguiar ◽  
Bryan W. Reed ◽  
Quentin M. Ramasse ◽  
Rolf Erni ◽  
Nigel D. Browning

Author(s):  
Wenfeng Xu ◽  
Peng Sun ◽  
Guogang Yang

Abstract Sector cascade experiments can not only be convenient to measure various aerodynamic parameters but also reveal the real flow characteristics in turbomachinery. However, the sector cascade is only a part of the whole annular cascade. The circumferential angle, the structure of the side guide plate (SGP) and the suction mode on the SGP have a great effect on the periodicity of the flow field. Therefore, the effect of structure on periodicity must be taken into consideration in order to obtain accurate data of the sector cascade experiment. In this paper, a compressor sector cascade composed of a row of adjustable guide vanes (AGVs) and a row of stators is designed. The effect of the circumferential angle, SGP structure and suction position on the periodicity is studied by numerical simulation. An optimal cascade scheme is selected for experimental research. The results show that a larger circumferential angle can weaken the effect of low-energy fluid near the SGP on the middle passages. However, given the limited experimental conditions, the circumferential angle is set at 110° which consists of 15 AGVs and 14 stators. What’s more, the SGP with the same bowed angle of AGV on both sides of the cascade can reduce the influence of the SGP on the adjacent passages and obtain a regular periodicity. The low-energy fluids still accumulate near the SGP. The suction near the stator suction side of the SGP can alleviate the blockage in the flow passage and further improve the periodicity of the cascade. Serious analysis of the experiment results have further identified that the suction near the stator suction side of SGP can make the aerodynamic parameters of the flow field uniform and lead to a good periodicity. At the same time, the feasibility of this design method is verified.


1973 ◽  
Vol 7 (8) ◽  
pp. 2467-2482 ◽  
Author(s):  
G. S. Guralnik ◽  
Hung-sheng Tsao ◽  
T. F. Wong
Keyword(s):  

1962 ◽  
Vol 125 (5) ◽  
pp. 1771-1777 ◽  
Author(s):  
Y. S. Kim

1999 ◽  
Vol 14 (26) ◽  
pp. 4079-4120 ◽  
Author(s):  
LUIS J. GARAY

In this work, I review some aspects concerning the evolution of quantum low-energy fields in a foamlike space–time, with involved topology at the Planck scale but with a smooth metric structure at large length scales, as follows. Quantum gravitational fluctuations may induce a minimum length thus introducing an additional source of uncertainty in physics. The existence of this resolution limit casts doubts on the metric structure of space–time at the Planck scale and opens a doorway to nontrivial topologies, which may dominate Planck scale physics. This foamlike structure of space–time may show up in low-energy physics through loss of quantum coherence and mode-dependent energy shifts, for instance, which might be observable. Space–time foam introduces non-local interactions that can be modeled by a quantum bath, and low-energy fields evolve according to a master equation that displays such effects. Similar laws are also obtained for quantum mechanical systems evolving according to good real clocks, although the underlying Hamiltonian structure in this case establishes serious differences among both scenarios.


Author(s):  
Gary Hendrick ◽  
James Tuckerman ◽  
Mario Juha ◽  
Nathan Crane

Testing methods and apparatus for studying capillary self-assembly processes are presented. This system permits the control of key self-assembly process variables so that relationships between process rates and yields and the process variables can be tested. Part arrival energies and angles are controlled by dropping through a fluid at terminal velocity onto fixed substrate binding sites. Using this system, the assembly probability at the low energy limit is shown to match a simple area fraction relationship.


1988 ◽  
Vol 43 (4) ◽  
pp. 345-359 ◽  
Author(s):  
H. Stumpf

Abstract The model is defined by a selfregularizing nonlinear preon field equation, and all observable (elementary and non-elementary) particles are assumed to be bound (quantum) states of fermionic preon fields. Electroweak gauge bosons, leptons, quarks, gluons as preon composites and their effective dynamics etc. were studied in preceding papers. In this paper gravitons are introduced as four-preon composites and their effective interactions are discussed. This discussion is performed by the application of functional quantum theory to the model under consideration and subsequent evaluation of a weak mapping procedure, both introduced in preceding papers. In the low energy limit it is demonstrated that the effective graviton dynamics lead to the complete homogeneous Einstein equations in tetrad formulation.


Sign in / Sign up

Export Citation Format

Share Document