scholarly journals NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants

2002 ◽  
Vol 100 (1) ◽  
pp. 358-363 ◽  
Author(s):  
H. Moon ◽  
B. Lee ◽  
G. Choi ◽  
D. Shin ◽  
D. T. Prasad ◽  
...  
2014 ◽  
Vol 42 (4) ◽  
pp. 979-984 ◽  
Author(s):  
Bruce Morgan

Glutathione is the most abundant small molecule thiol in nearly all eukaryotes. Whole-cell levels of oxidized (GSSG) and reduced (GSH) glutathione are variable and responsive to genetic and chemical manipulations, which has led to their relative levels being widely used as a marker of the ‘cellular redox state’ and to indicate the level of ‘oxidative stress’ experienced by cells, tissues and organisms. However, the applicability of glutathione as a marker for a generalized ‘cellular redox state’ is questionable, especially in the light of recent observations in yeast cells. In yeast, whole-cell GSSG changes are almost completely dependent upon the activity of an ABC-C (ATP-binding cassette-C) transporter, Ycf1 (yeast cadmium factor 1), which mediates sequestration of GSSG to the vacuole. In the absence of Ycf1 whole-cell GSSG content is strongly decreased and extremely robust to perturbation. These observations are consistent with highly specific redox-sensitive GFP probe-based measurements of the cytosolic glutathione pool and indicate that cytosolic GSSG reductive systems are easily able to reduce nearly all GSSG formed, even following treatment with large concentrations of oxidant. In the present paper, I discuss the consequences of these new findings for our understanding of glutathione homoeostasis in the eukaryotic cell.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1251
Author(s):  
Laura Denise López-Barrera ◽  
Roberto Díaz-Torres ◽  
Joselo Ramón Martínez-Rosas ◽  
Ana María Salazar ◽  
Carlos Rosales ◽  
...  

In this report, we investigated whether the use of chitosan-carrying-glutathione nanoparticles (CH-GSH NPs) can modify proliferation and apoptosis, and reduce cell damage induced by doxorubicin on breast cancer cells. Doxorubicin is a widely used antineoplasic agent for the treatment of various types of cancer. However, it is also a highly toxic drug because it induces oxidative stress. Thus, the use of antioxidant molecules has been considered to reduce the toxicity of doxorubicin. CH-GSH NPs were characterized in size, zeta potential, concentration, and shape. When breast cancer cells were treated with CH-GSH nanoparticles, they were localized in the cellular cytoplasm. Combined doxorubicin exposure with nanoparticles increased intracellular GSH levels. At the same time, decreasing levels of reactive oxygen species and malondialdehyde were observed and modified antioxidant enzyme activity. Levels of the Ki67 protein were evaluated as a marker of cell proliferation and the activity of the Casp-3 protein related to cell apoptosis was measured. Our data suggests that CH-GSH NPs can modify cell proliferation by decreasing Ki67 levels, induce apoptosis by increasing caspase-3 activity, and reduce the oxidative stress induced by doxorubicin in breast cancer cells by modulating molecules associated with the cellular redox state. CH-GSH NPs could be used to reduce the toxic effects of this antineoplastic. Considering these results, CH-GSH NPs represent a novel delivery system offering new opportunities in pharmacy, material science, and biomedicine.


1999 ◽  
Vol 82 (08) ◽  
pp. 810-817 ◽  
Author(s):  
Bradford Berk

IntroductionReactive oxygen species (ROS), generated by a variety of extracellular and intracellular mechanisms, are novel signal mediators that regulate signal transduction events. In this discussion, ROS will refer to H2O2, O2-, and OH-. Data suggest that, following vascular injury, ROS production is increased. These ROS activate signal events that are required for the repair process. Three key findings from our laboratories support the concept that oxidative stress is an important stimulus in the vessel wall for vascular repair, vascular smooth muscle cell (VSMC) growth, and vascular lesion formation. First, following oversized balloon inflation-induced porcine coronary artery injury, there is increased production of oxygen radicals (O2-, H2O2, and OH-) in the vessel wall for several weeks.1 Second, administration of several antioxidants including probucol, vitamins C and E, and L-cysteine decreases neointimal proliferation and/or promotes vessel remodeling in pig and rat injury models.1-3 Third, in vitro, we have shown that ROS stimulate VSMC growth and activate signal events typical of VSMC mitogens.4,5 A scheme for the mechanism by which oxidative stress is proposed in Figure 1. The initial vascular injury produced by balloon inflation rapidly increases the local concentration of ROS, which stimulate further generation of ROS by multiple mechanisms including xanthine oxidase, NADH oxidase, phospholipases, and mitochondrial electron transport dysfunction. In the setting of VSMC growth stimulation (by platelet and VSMC-derived mitogens) and cytokine stimulation (by leukocytes), there is amplification of ROS generating systems. These processes cause the cellular redox state to become more oxidized. This establishes a self-perpetuating increase in ROS production. Next, changes in cellular redox state stimulate growthrelated signal transduction events. Until recently, VSMC growth was thought to be mediated largely by peptide growth factors. Published data from our laboratory show that ROS increase intracellular calcium, activate protein kinases, increase protooncogene expression, and stimulate DNA synthesis mitogens.4-6 However, the specific mechanisms by which the sustained oxidative stress present in the injured vessel stimulates VSMC growth remain undefined. Data presented indicate that redox sensitive signal pathways may be defined by specific activation of upstream mediators, which include phospholipases, small G proteins, and tyrosine kinases. Final effectors include serine-threonine kinases, such as the mitogen activated protein (MAP) kinases that activate specific transcription factors.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Edgar D. Yoboue ◽  
Anne Devin

Mitochondrial biogenesis is a complex process. It necessitates the contribution of both the nuclear and the mitochondrial genomes and therefore crosstalk between the nucleus and mitochondria. It is now well established that cellular mitochondrial content can vary according to a number of stimuli and physiological states in eukaryotes. The knowledge of the actors and signals regulating the mitochondrial biogenesis is thus of high importance. The cellular redox state has been considered for a long time as a key element in the regulation of various processes. In this paper, we report the involvement of the oxidative stress in the regulation of some actors of mitochondrial biogenesis.


2021 ◽  
Vol 22 (2) ◽  
pp. 967
Author(s):  
Maria Favia ◽  
Anna Atlante

The redox states of NAD and NADP are linked to each other in the mitochondria thanks to the enzyme nicotinamide nucleotide transhydrogenase (NNT) which, by utilizing the mitochondrial membrane potential (mΔΨ), catalyzes the transfer of redox potential between these two coenzymes, reducing one at the expense of the oxidation of the other. In order to define NNT reaction direction in CF cells, NNT activity under different redox states of cell has been investigated. Using spectrophotometric and western blotting techniques, the presence, abundance and activity level of NNT were determined. In parallel, the levels of NADPH and NADH as well as of mitochondrial and cellular ROS were also quantified. CF cells showed a 70% increase in protein expression compared to the Wt sample; however, regarding NNT activity, it was surprisingly lower in CF cells than healthy cells (about 30%). The cellular redox state, together with the low mΔΨ, pushes to drive NNT reverse reaction, at the expense of its antioxidant potential, thus consuming NADPH to support NADH production. At the same time, the reduced NNT activity prevents the NADH, produced by the reaction, from causing an explosion of ROS by the damaged respiratory chain, in accordance with the reduced level of mitochondrial ROS in NNT-loss cells. This new information on cellular bioenergetics represents an important building block for further understanding the molecular mechanisms responsible for cellular dysfunction in cystic fibrosis.


2016 ◽  
Vol 100 ◽  
pp. S119 ◽  
Author(s):  
Dustin Carroll ◽  
Yanming Zhao ◽  
Haining Zhu ◽  
Ines Batinic-Haberle ◽  
Daret St. Clair

Sign in / Sign up

Export Citation Format

Share Document