scholarly journals A cell cycle-responsive transcriptional control element and a negative control element in the gene encoding DNA polymerase alpha in Saccharomyces cerevisiae.

1991 ◽  
Vol 88 (14) ◽  
pp. 6058-6062 ◽  
Author(s):  
C. B. Gordon ◽  
J. L. Campbell
1989 ◽  
Vol 93 (4) ◽  
pp. 605-613
Author(s):  
C. Hutchison ◽  
I. Kill

The nuclear distribution of DNA polymerase alpha and PCNA/cyclin in embryonic nuclei has been investigated, in a cell-free extract of Xenopus eggs that recapitulates a basic cell-cycle in vitro, by indirect immunofluorescence microscopy. Both antigens co-distribute with the chromatin in S-phase nuclei; however, as DNA replication is completed and nuclei progress into a G2 state anti-PCNA fluorescence disappears and anti-DNA polymerase alpha fluorescence becomes resolved into bright spots. These spots are initially associated with the chromatin strands and can be seen to share both anti-PCNA and anti-DNA polymerase alpha fluorescence, but as anti-PCNA fluorescence fades the spots become dissociated from the chromatin and are redistributed throughout the nucleus until they are dispersed during nuclear envelope breakdown. The loss of anti-PCNA fluorescence and displacement of anti-DNA polymerase alpha fluorescence from the chromatin can be prevented by inhibiting DNA synthesis with aphidicolin. Under these conditions both antigens remain associated with the chromatin even after nuclear envelope breakdown and lamin dispersal. The association of these antigens with mitotic figures appears to be functional, as both biotin-11-dUTP and [32P]dCTP can be incorporated efficiently into DNA during the mitotic period.


1996 ◽  
Vol 7 (12) ◽  
pp. 1909-1919 ◽  
Author(s):  
M Ziman ◽  
J S Chuang ◽  
R W Schekman

In Saccharomyces cerevisiae, the synthesis of chitin, a cell-wall polysaccharide, is temporally and spatially regulated with respect to the cell cycle and morphogenesis. Using immunological reagents, we found that steady-state levels of Chs1p and Chs3p, two chitin synthase enzymes, did not fluctuate during the cell cycle, indicating that they are not simply regulated by synthesis and degradation. Previous cell fractionation studies demonstrated that chitin synthase I activity (CSI) exists in a plasma membrane form and in intracellular membrane-bound particles called chitosomes. Chitosomes were proposed to act as a reservoir for regulated transport of chitin synthase enzymes to the division septum. We found that Chs1p and Chs3p resided partly in chitosomes and that this distribution was not cell cycle regulated. Pulse-chase cell fractionation experiments showed that chitosome production was blocked in an endocytosis mutant (end4-1), indicating that endocytosis is required for the formation or maintenance of chitosomes. Additionally, Ste2p, internalized by ligand-induced endocytosis, cofractionated with chitosomes, suggesting that these membrane proteins populate the same endosomal compartment. However, in contrast to Ste2p, Chs1p and Chs3p were not rapidly degraded, thus raising the possibility that the temporal and spatial regulation of chitin synthesis is mediated by the mobilization of an endosomal pool of chitin synthase enzymes.


2001 ◽  
Vol 183 (1) ◽  
pp. 46-54 ◽  
Author(s):  
Yvonne Weber ◽  
Uwe J. Santore ◽  
Joachim F. Ernst ◽  
Rolf K. Swoboda

ABSTRACT Sec20p is a component of the yeast Saccharomyces cerevisiae secretory pathway that does not have a close homolog in higher eukaryotic cells. To verify the function of Sec20p in other fungal species, we characterized the gene encoding a Sec20p homolog in the human fungal pathogen Candida albicans. The deduced protein has 27% identity with, but is missing about 100 N-terminal residues compared to S. cerevisiae Sec20p, which is part of the cytoplasmic tail interacting with the cytoplasmic protein Tip20p. Because a strain lacking both C. albicans SEC20alleles could not be constructed, we placed SEC20 under transcriptional control of two regulatable promoters, MET3pand PCK1p. Repression of SEC20 expression in these strains prevented (MET3p-SEC20 allele) or retarded (PCK1p-SEC20 allele) growth and led to the appearance of extensive intracellular membranes, which frequently formed stacks. Reduced SEC20 expression in the PCK1p-SEC20strain did not affect morphogenesis but led to a series of hypersensitivity phenotypes including supersensitivity to aminoglycoside antibiotics, to nystatin, to sodium dodecyl sulfate, and to cell wall inhibitors. These results demonstrate the occurrence and function of Sec20p in a fungal species other than S. cerevisiae, but the lack of the N-terminal domain and the apparent absence of a close TIP20 homolog in the C. albicans genome also indicate a considerable diversity in mechanisms of retrograde vesicle traffic in eukaryotes.


1992 ◽  
Vol 12 (12) ◽  
pp. 5724-5735
Author(s):  
J Miles ◽  
T Formosa

Potential DNA replication accessory factors from the yeast Saccharomyces cerevisiae have previously been identified by their ability to bind to DNA polymerase alpha protein affinity matrices (J. Miles and T. Formosa, Proc. Natl. Acad. Sci. USA 89:1276-1280, 1992). We have now used genetic methods to characterize the gene encoding one of these DNA polymerase alpha-binding proteins (POB1) to determine whether it plays a role in DNA replication in vivo. We find that yeast cells lacking POB1 are viable but display a constellation of phenotypes indicating defective DNA metabolism. Populations of cells lacking POB1 accumulate abnormally high numbers of enlarged large-budded cells with a single nucleus at the neck of the bud. The average DNA content in a population of cells lacking POB1 is shifted toward the G2 value. These two phenotypes indicate that while the bulk of DNA replication is completed without POB1, mitosis is delayed. Deleting POB1 also causes elevated levels of both chromosome loss and genetic recombination, enhances the temperature sensitivity of cells with mutant DNA polymerase alpha genes, causes increased sensitivity to UV radiation in cells lacking a functional RAD9 checkpoint gene, and causes an increased probability of death in cells carrying a mutation in the MEC1 checkpoint gene. The sequence of the POB1 gene indicates that it is identical to the CTF4 (CHL15) gene identified previously in screens for mutations that diminish the fidelity of chromosome transmission. These phenotypes are consistent with defective DNA metabolism in cells lacking POB1 and strongly suggest that this DNA polymerase alpha-binding protein plays a role in accurately duplicating the genome in vivo.


1988 ◽  
Vol 8 (11) ◽  
pp. 5016-5025
Author(s):  
A F Wahl ◽  
A M Geis ◽  
B H Spain ◽  
S W Wong ◽  
D Korn ◽  
...  

We studied the expression of the human DNA polymerase alpha gene during cell proliferation, during cell progression through the cell cycle, and in transformed cells compared with normal cells. During the activation of quiescent cells (G0 phase) to proliferate (G1/S phases), the steady-state mRNA levels, rate of synthesis of nascent polymerase protein, and enzymatic activity in vitro exhibited a substantial and concordant increase prior to the peak of in vivo DNA synthesis. In transformed cells, the respective values were amplified greater than 10-fold. In actively growing cells separated into discrete stages of the cell cycle by counterflow elutriation or by mitotic shakeoff, levels of steady-state transcripts, translation rates, and enzymatic activities of polymerase alpha were constitutively and concordantly expressed at all stages of the cell cycle, with only a moderate elevation prior to the S phase and a slight decline in the G2 phase. These findings support the conclusion that the regulation of human DNA polymerase alpha gene expression is at the transcriptional level and strongly suggest that the regulatory mechanisms that are operative during the entrance of a cell into the mitotic cycle are fundamentally different from those that modulate polymerase alpha expression in continuously cycling cells.


2016 ◽  
Vol 214 (6) ◽  
pp. 691-703 ◽  
Author(s):  
Dante Lepore ◽  
Olya Spassibojko ◽  
Gabrielle Pinto ◽  
Ruth N. Collins

Intracellular trafficking is an essential and conserved eukaryotic process. Rab GTPases are a family of proteins that regulate and provide specificity for discrete membrane trafficking steps by harnessing a nucleotide-bound cycle. Global proteomic screens have revealed many Rab GTPases as phosphoproteins, but the effects of this modification are not well understood. Using the Saccharomyces cerevisiae Rab GTPase Sec4p as a model, we have found that phosphorylation negatively regulates Sec4p function by disrupting the interaction with the exocyst complex via Sec15p. We demonstrate that phosphorylation of Sec4p is a cell cycle–dependent process associated with cytokinesis. Through a genomic kinase screen, we have also identified the polo-like kinase Cdc5p as a positive regulator of Sec4p phosphorylation. Sec4p spatially and temporally localizes with Cdc5p exclusively when Sec4p phosphorylation levels peak during the cell cycle, indicating Sec4p is a direct Cdc5p substrate. Our data suggest the physiological relevance of Sec4p phosphorylation is to facilitate the coordination of membrane-trafficking events during cytokinesis.


Gene ◽  
1990 ◽  
Vol 88 (2) ◽  
pp. 247-252 ◽  
Author(s):  
A. Dmochowska ◽  
D. Dignard ◽  
R. Maleszka ◽  
D.Y. Thomas

Sign in / Sign up

Export Citation Format

Share Document