scholarly journals Budesonide epimer R or dexamethasone selectively inhibit platelet-activating factor-induced or interleukin 1 -induced DNA binding activity of cis-acting transcription factors and cyclooxygenase-2 gene expression in human epidermal keratinocytes

1998 ◽  
Vol 95 (7) ◽  
pp. 3914-3919 ◽  
Author(s):  
W. J. Lukiw ◽  
R. P. Pelaez ◽  
J. Martinez ◽  
N. G. Bazan
1994 ◽  
Vol 72 (11-12) ◽  
pp. 639-648 ◽  
Author(s):  
Ian de Belle ◽  
Lucia Testolin ◽  
Siyaram Pandey ◽  
Christine Carson ◽  
P. Roy Walker ◽  
...  

Dexamethasone (Dex) accelerates the rate of apoptosis in thymocytes by a process thought to require gene expression. Among the genes implicated in the regulation of this phenomenon are the immediate early genes such as c-fos and c-jun, whose expression is modulated by a complement of preexisting transcription factors. We have analyzed the DNA-binding activity of these constitutive transcription factors during Dex-induced apoptosis in thymocytes to assess their functionality. We observed a progressive loss of the DNA-binding proteins in parallel with the appearance of the characteristic morphological and biochemical features of apoptosis. At the same time we have found a general increase in the nuclear proteolytic activity concomitant with a significant loss of the nuclear nonhistone chromosomal proteins. Indeed, cotreatment of thymocytes with the nonspecific serine protease inhibitor phenyl-methylsulphonyl fluoride was able to partially protect the stability of the DNA-binding proteins and alter the expression of the c-fos and c-jun genes but did not inhibit apoptosis. Our results suggest that the action of a protease(s) is responsible for the degradation of constitutive transcription factors during Dex-induced apoptosis, rendering the death pathway irreversible.Key words: apoptosis, thymocytes, proteolysis, transcription factors, gene expression.


2008 ◽  
Vol 36 (10) ◽  
pp. 3341-3353 ◽  
Author(s):  
Paul Peixoto ◽  
Yang Liu ◽  
Sabine Depauw ◽  
Marie-Paule Hildebrand ◽  
David W. Boykin ◽  
...  

1991 ◽  
Vol 11 (3) ◽  
pp. 1547-1552
Author(s):  
D Leshkowitz ◽  
M D Walker

Insulin-producing cells and fibroblasts were fused to produce hybrid lines. In hybrids derived from both hamster and rat insulinoma cells, no insulin mRNA could be detected in any of seven lines examined by Northern (RNA) analysis despite the presence in each line of the insulin genes of both parental cells. Hybrid cells were transfected with recombinant chloramphenicol acetyltransferase plasmids containing defined segments of the rat insulin I gene 5' flank. We observed no transcriptional activity of the intact insulin enhancer or of IEB2, a critical cis-acting element of the insulin enhancer. IEB2 has previously been shown to interact in vitro with IEF1, a DNA-binding activity observed selectively in insulin-producing cells. Hybrid cells showed no detectable IEF1 activity. Furthermore, the insulin enhancer was unable to reduce transcription directed by the Moloney sarcoma virus enhancer in a double-enhancer construct. Thus, extinction of insulin gene expression in the hybrids apparently does not operate through a direct action of repressors on the insulin enhancer; rather, extinction is accompanied by, and may be caused by, reduced DNA-binding activity of the putative transcriptional activator IEF1.


Blood ◽  
1993 ◽  
Vol 82 (8) ◽  
pp. 2470-2477 ◽  
Author(s):  
JH Park ◽  
L Levitt

Abstract Transfected Jurkat cells overexpressing extracellular signal-regulated kinase (ERK1), also referred to as mitogen-activated protein (MAP) kinase, were selected by Western blotting assay using anti-ERK1 and antiphosphotyrosine antibodies in combination with a functional MAP kinase assay. We then asked whether enhanced ERK1 expression had any effect on induction of T-cell cytokine genes. The results show that overexpression of ERK1 enhances expression of T-cell interleukin-2 (IL- 2), IL-3, and granulocyte-macrophage colony-stimulating factor mRNA; no change was seen in expression of the alpha-actin gene. DNA-binding activities of the transcription factors AP1, NF-AT, and NF-kB were specifically increased twofold to fourfold in ERK1-overexpressing clones relative to nontransformed or vector-transformed cells, whereas no enhancement of CK1-CK2 protein DNA binding activity was detected after ERK1 overexpression. Additionally, increased NF-AT DNA binding activity was associated with functional enhancement of NF-AT transactivating activity in ERK1-overexpressing cells. These results provide direct evidence for the role of MAP kinase in the regulation of cytokine gene expression and indicate that such regulation is likely mediated through the enhanced DNA binding activity of specific nuclear transcription factors.


1997 ◽  
Vol 272 (3) ◽  
pp. L504-L511 ◽  
Author(s):  
I. Jaspers ◽  
E. Flescher ◽  
L. C. Chen

Ozone, one of the most reactive oxidant gases to which humans are routinely exposed, induces inflammation in the lower airways. The airway epithelium is one of the first targets that inhaled ozone will encounter, but its role in airway inflammation is not well understood. Expression of inducible genes involved in the inflammatory response, such as interleukin (IL)-8, is controlled by transcription factors. Expression of the IL-8 gene is regulated by the transcription factors nuclear factor (NF)-kappaB, NF-IL-6, and possibly activator protein-1 (AP-1). Type II-like epithelial cells (A549) were grown on a collagen-coated membrane and exposed in vitro to 0.1 ppm ozone or air. Exposure to ozone induced DNA-binding activity of NF-kappaB, NF-IL-6, and AP-1. IL-8 mRNA and IL-8 protein levels were also increased after ozone exposure. These results link ozone-induced DNA-binding activity of transcription factors and the production of IL-8 by epithelial cells thus demonstrating a potential cellular cascade resulting in the recruitment of inflammatory cells into the airway lumen.


2000 ◽  
Vol 275 (40) ◽  
pp. 31460-31468 ◽  
Author(s):  
M. Angélica Santana ◽  
Gustavo Pedraza-Alva ◽  
Norma Olivares-Zavaleta ◽  
Vicente Madrid-Marina ◽  
Vaclav Horejsi ◽  
...  

1998 ◽  
Vol 334 (1) ◽  
pp. 205-210 ◽  
Author(s):  
Georgios SABATAKOS ◽  
Gareth E. DAVIES ◽  
Maria GROSSE ◽  
Anthony CRYER ◽  
Dipak P. RAMJI

Transcription factors belonging to the CCAAT-enhancer binding protein (C/EBP) family have been implicated in the activation of gene expression in the mammary gland during lactation. We have therefore investigated the detailed expression profile of the C/EBP family during lactation and involution of the mouse mammary gland. The expression of C/EBPβ and C/EBPδ mRNA was low during lactation, increased dramatically at the beginning of involution and remained constant thereafter. In contrast, C/EBPα mRNA expression was relatively high during the early stages of lactation, declined to low levels during the late stages of lactation and at the start of involution, and increased again during involution. Electrophoretic mobility-shift assays showed a close correlation between the expression of the C/EBP genes and the functional C/EBP DNA-binding activity and, additionally, demonstrated the participation of heterodimers, formed from among the three proteins, in DNA–protein interactions. The DNA-binding activity of the activator protein 1 (AP1) family of transcription factors was also induced during involution. These results therefore point to potentially important regulatory roles for both the C/EBP and the AP1 family during lactation and involution of the mammary gland.


Sign in / Sign up

Export Citation Format

Share Document